Banach-Tarského paradox | PDF(185KB) PNG |
Příspěvek se zabývá slavným Banach-Tarského paradoxem, který ukazuje, že trojrozměrný prostor se nechová zcela dle geometrické intuice. |
Zdroj: sborník | Autor: Alexander "Olin" Slávik | Datum: 2012 Oldřichov |
Celá čísla p-naruby | PDF(96KB) PNG |
Příspěvek obsahuje základy teorie p-adických čísel, ukazuje jeden z intuitivnějších a méně formálních způsobů zavedení. Obsahuje také mnohá cvičení na osvětlení struktury p-adických celých čísel. |
Zdroj: sborník | Autor: Jakub "Šnek" Opršal | Datum: 2011 Blansko-Obůrka |
Deka paní Perkinsovej | PDF(35KB) PNG |
Prednáška o delení štvorca na štvorce v štvorčekovej mriežke. |
Zdroj: sborník | Autor: Michal Szabados | Datum: 2012 Oldřichov |
Derivace (s trochou mýdla) | PDF(216KB) PNG |
Tento příspěvek patří k přednášce, na které si názorně vysvětlíme, co je to derivace funkce, naučíme se nejdůležitější pravidla pro její výpočet a objasníme si její hlavní způsoby využití. |
Zdroj: sborník | Autor: Kuba Krásenský | Datum: 2017 Zásada |
Everze sféry | PDF(358KB) PNG |
Dostanete sféru (míč) z materálu, který umí procházet sám sebou a chcete ji obrátit naruby. Zdá se vám to triviální? Zdá se vám to nemožné? Ani jedno není správný odhad. |
Zdroj: sborník | Autor: Miroslav Olšák | Datum: 2011 Blansko-Obůrka |
Finanční gramotnost | PDF(32KB) PNG |
Pár slov o úrokování, diskontování, finančních tocích, hypotékách, důchodech a pojištění. |
Zdroj: sborník | Autor: Lukáš Zavřel | Datum: 2014 Uhelná Příbram |
Gaussova prvočísla | PDF(69KB) PNG |
Stejně jako z reálných čísel jsou svým způsobem nejzajímavější čísla celá, i v komplexních číslech existuje pozoruhodná podmnožina. Jsou to Gaussova čísla – komplexní čísla, jejichž reálná i imaginární část jsou celé. Tato množina tvoří v Gaussově rovině čtvercovou mřížku. Ukazuje se, že i mezi těmito čísly jsou některá, která se nedají zapsat jako součin dvou jiných – Gaussova prvočísla. Příspěvek rozebírá, která to jsou, přičemž využijeme různé znalosti z teorie čísel. Nabyté znalosti jsou použity pro vyřešení několika diofantických rovnic. |
Zdroj: sborník | Autor: Kuba Krásenský | Datum: 2014 Uhelná Příbram |
Generujúce funkcie | PDF(99KB) PNG |
Generujúce funkcie sú silný nástroj, ktorý nám pomáha pri práci s postupnosťami – miesto s nekonečne veľa čísel totiž pracujeme len s jednou funkciou. Obsahom tejto prednášky je predstaviť základné operácie, ktoré môžeme s generujúcimi funkciami vykonávať. Tiež si ukážeme niektoré z aplikácií generujúcich funkcií, ako napríklad overovanie rôznych identít alebo hľadanie explicitných vzorcov pre rekurentné postupnosti. |
Zdroj: sborník | Autor: Peter "πtr" Korcsok | Datum: 2015 Staré Město |
Hyperčísla | PDF(65KB) PNG |
Občas je užitečné přidat k číslům nekonečno. Jenže když přidáme jenom jedno, budeme mít problém s výrazy jako 1 + ∞ - ∞. V tomto příspěvku to vyřešíme tím, že přidáme nekonečen víc. Přidáme jich dokonce tolik, že vůbec nebude poznat, že jsme nějaká přidali. Na závěr se podíváme na použití takových čísel. |
Zdroj: sborník | Autor: Mirek Olšák | Datum: 2012 Oldřichov |
Kategorie | PDF(305KB) PNG |
Přednáška je úvodem do teorie kategorií – abstraktní matematické teorie, kde si vystačíme s puntíky a šipkami. |
Zdroj: sborník | Autor: Anička Doležalová | Datum: 2017 Zásada |
Metrické prostory a kompaktnost | PDF(241KB) PNG |
Příspěvek shrnuje vybrané základní poznatky o metrických prostorech. Jeho závěrečná část je věnována kompaktnosti a jejím aplikacím. |
Zdroj: sborník | Autor: David Hruška | Datum: 2017 Zásada |
Neeuklidovská geometrie | PDF(326KB) PNG |
Přednáška se zabývá historií vzniku neeukleidovské geometrie, geometrií na křivých plochách, sférickou a hyperbolickou geometrií a jejich souvislostí se
součtem velikostí vnitřních úhlů v trojúhelníku. Tento příspěvek je pouze velmi stručným shrnutím některých částí přednášky a není zamýšlen jako plnohodnotný studijní materiál. |
Zdroj: sborník | Autor: Háňa Bendová | Datum: 2011 Hojsova Stráž |
Nekonečně malá čísla | PDF(81KB) PNG |
Ukážeme si tzv. nestandardní model reálných čísel. Ten umožňuje mluvit o nekonečně malých a nekonečně velkých číslech, pomocí kterých lze definovat pojmy jako limita a spojitost přímočařeji a intuitivněji. Standardně se tento model nepoužívá, protože ačkoli je v jistých pohledech intuitivní, může svádět k nekorektnímu zacházení. Tomuto nestandardnímu modelu se říká hyperreálná čísla. |
Zdroj: sborník | Autor: Tonda Češík | Datum: 2017 Meziměstí |
Nekonečno | PDF(57KB) PNG |
Příspěvek představuje základní vlastnosti pojmu sloužícího ke srovnávání množin podle velikosti, tzv. mohutnosti. Dále obsahuje několik úloh a klasických tvrzení týkajících se (převážně spočetného) nekonečna. |
Zdroj: sborník | Autor: David Hruška | Datum: 2015 Staré Město |
Od grupoidů ke grupám | PDF(72KB) PNG |
Příspěvek představuje grupoidy, neboli množiny s jednou binární operací. Seznamuje s různými typy grupoidů a uvádí množství příkladů, kde se s těmito strukturami můžeme setkat. |
Zdroj: sborník | Autor: Martina Vaváčková | Datum: 2014 Zásada |
Permutační grupy | PDF(56KB) PNG |
Krátký příspěvek, který seznamuje s grupami a ukazuje několik souvislostí s permutacemi. |
Zdroj: sborník | Autor: Tomáš "Šavlík" Pavlík | Datum: 2012 Oldřichov |
Seznámení s topologií | PDF(61KB) PNG |
V přednášce se seznámíme s úplnými základy obecné topologie a s oddělovacími axiomy. V jistém smyslu se jedná o zobecnění metrických prostorů, kde místo metriky budeme mít jen jakousi slabší strukturu. Ta nám pořád umožní mluvit o takových pojmech jako například spojitost zobrazení. |
Zdroj: sborník | Autor: Anička Doležalová | Datum: 2016 Lipová-lázně |
Úvod do Ramseyovy teorie | PDF(80KB) PNG |
Věděl jsi, že housenky bývají zbarvené tak, že připomínají rostlinu, na které se pasou? Zkus si nějakou housenku nakreslit a pokus se její články vybarvit třemi barvičkami tak, aby se v obarvení nevyskytovaly žádné pravidelnosti, které by nebohého tvora mohly prozradit. Asi ti to moc nepůjde – tu se vyskytne stejná barvička třikrát vedle sebe, jindy čtyři stejné barvičky v pravidelných vzdálenostech od sebe. Překvapivě to ani jinak být nemůže, jak tvrdí van der Waerdenova věta. Existuje celý matematický obor zabývající se faktem, že velké objekty často obsahují pravidelné podstruktury. A právě tohoto oboru (nazývaného také Ramseyova teorie) se v této dvojpřednášce dotkneme. |
Zdroj: sborník | Autor: Vašek Rozhoň | Datum: 2016 Lipová-lázně |
Velká přirozená čísla | PDF(67KB) PNG |
Příspěvek se zamýšlí nad otázkou, jak definovat „co největší“ přirozené číslo. Začíná s několika pohledy na Ackermannovu funkci a dostává se do míst, na která konečná kombinatorika nestačí. |
Zdroj: sborník | Autor: Mirek Olšák | Datum: 2012 Domašov |
Velké prostory | PDF(82KB) PNG |
Budeme si hrát s vektorovými prostory, které mají nekonečnou dimenzi. Cílem je si je trochu osahat a získat základní intuici. K tomu nám poslouží hlavně prostory posloupností. |
Zdroj: sborník | Autor: Anička Doležalová | Datum: 2017 Meziměstí |