Pokec (949) rss-icon
Chat řešitelů a organizátorů Matematického korespondenčního semináře. Dotazy týkající se úloh z aktuálních sérií směřujte na e-mail info (zavináč) prase.cz.
Klára Churá | 8. 12. 2020 17:14:24
Pro ty z vás, které jsem ještě nepřepadla: Vyrobila jsem matematický adventní kalendář k nalezení na https://clarech712.wixsite.com/mac2020!
Matematická sekce (689) rss-icon
Tady se můžete zeptat na cokoliv, co se týká matematiky.
Dominik Stejskal | org | 13. 5. 2021 03:36:46
Než dojde další ročník ke svému konci, je tu ještě jedna várka hintů ke 4. jarní sérii. :)

Úloha 1.
(a) + skrytý text
Ukaž, že body \textstyle M, \textstyle E, \textstyle C a \textstyle F leží na jedné kružnici.

(b) + skrytý text
Překlop body \textstyle B a \textstyle D po řadě podle úseček \textstyle AE a \textstyle AF a označ obrazy \textstyle B, \textstyle D. Ukaž, že \textstyle A, \textstyle B, \textstyle D leží na přímce a \textstyle B je rovnoběžník. + skrytý text
V rovnoběžníku se půlí úhlopříčky. Následně hledej shodné trojúhelníky.

Úloha 2.
(a) + skrytý text
V pravoúhlém trojúhelníku je poloměr kružnice vepsané = (odvěsna + odvěsna - přepona) / 2.

(b) + skrytý text
Rozděl vyhovující permutace na skupinky po \textstyle p^2. + skrytý text
Pokud \textstyle (a_1, a_2, \dots, a_p) vyhovuje, pak vyhovují i permutace tvaru \textstyle (a_{1 + 1}, a_{2 + 1}, \dots, a_{p + 1}) a \textstyle (a_1 + 1, a_2 + 1, \dots, a_p + 1), kde \textstyle p + 1 = 1. + skrytý text
Rozmysli si, že opakovanou aplikací tohoto algoritmu lze dostat přesně permutace tvaru \textstyle (a_{1 + k} + \ell, a_{2 + k} + \ell, \dots, a_{p + k} + \ell), kde \textstyle k, \ell \in \{0, 1, \dots, p - 1 \} a všechny indexy a hodnoty bereme modulo \textstyle p mezi \textstyle 1 a \textstyle p. Takto vyrobíme spoustu disjunktních skupinek vyhovujících permutací, které jsou velké nejvýše \textstyle p^2. Které z nich jsou menší než \textstyle p^2? + skrytý text
Ukaž, že to jsou přesně permutace s konstantní diferencí \textstyle d = a_{i + 1} - a_i pro všechna \textstyle i \in \{2, 3, \dots, p\}.

Úloha 3.
(a) + skrytý text
Podívej se na cestu mezi políčky s čísly \textstyle 1 a \textstyle n^2.

(b) + skrytý text
Kolik je kostiček potřeba k tomu, aby se už další nedala přiložit do jednoho čtverce \textstyle 4\times 4?

Úloha 4.
(a) + skrytý text
\textstyle XY prochází středem čtverce.

(b) + skrytý text
Uvažme nejmenší kruh obsahující všechny body. Můžou všechny body na okraji být součástí jedné půlkružnice?

Úloha 5.
(a) + skrytý text
V některou hodinu budou u trezoru 3 orgové. + skrytý text
Jednoho z nich lze propustit.

Úloha 6.
(a) + skrytý text
Velká prvočísla by bylo potřeba spárovat s jedničkou. + skrytý text
Jde zařídit 12 celočíselných zlomků.

(b) + skrytý text
Jde to pro všechna \textstyle n. Konstruuj \textstyle n-tici induktivně. + skrytý text
Přidej nulu a ke všemu přičti vhodné číslo.

Úloha 7.
(a) + skrytý text
\textstyle MN je těžnice v \textstyle ANB i \textstyle CMD.

(b) + skrytý text
Chceš dokázat \textstyle \frac{|AX|}{|AY|}=\frac{|BX|}{|BY|}. + skrytý text
\textstyle XY a společné tečny z bodů \textstyle A, \textstyle B se protínají v jediném bodě \textstyle T.

Matematika v příspěvcích

Do příspěvků lze vkládat matematické vzorce napsané v TeXu. Seznam značek naleznete na této stránce.

RSS kanály

Pokud chcete mít přehled o nejnovějších příspěvcích, použijte RSS:

rss-iconVšechny příspěvky | Pokec | Matematická sekce

Kontakt

email info (zavináč) prase.cz
pošta Korespondenční seminář
KAM MFF UK
Malostranské náměstí 25
118 00   Praha 1

Organizátoři

mff

Matematický korespondenční seminář je organizovaný studenty Matematicko-fyzikální fakulty UK pod záštitou Informatického ústavu UK a Oddělení pro vnější vztahy a propagaci UK.

Partneři

pix