27th IMO 1986

A1.  Let d be any positive integer not equal to 2, 5 or 13. Show that one can find distinct a, b in the set {2, 5, 13, d} such that ab - 1 is not a perfect square.
A2.  Given a point P0 in the plane of the triangle A1A2A3. Define As = As-3 for all s >= 4. Construct a set of points P1, P2, P3, ... such that Pk+1 is the image of Pk under a rotation center Ak+1 through an angle 120o clockwise for k = 0, 1, 2, ... . Prove that if P1986 = P0, then the triangle A1A2A3 is equilateral.
A3.  To each vertex of a regular pentagon an integer is assigned, so that the sum of all five numbers is positive. If three consecutive vertices are assigned the numbers x, y, z respectively, and y < 0, then the following operation is allowed: x, y, z are replaced by x + y, -y, z + y respectively. Such an operation is performed repeatedly as long as at least one of the five numbers is negative. Determine whether this procedure necessarily comes to an end after a finite number of steps.
B1.  Let A, B be adjacent vertices of a regular n-gon (n ≥ 5) with center O. A triangle XYZ, which is congruent to and initially coincides with OAB, moves in the plane in such a way that Y and Z each trace out the whole boundary of the polygon, with X remaining inside the polygon. Find the locus of X.
B2.  Find all functions f defined on the non-negative reals and taking non-negative real values such that: f(2) = 0, f(x) ≠ 0 for 0 ≤ x < 2, and f(xf(y)) f(y) = f(x + y) for all x, y.
B3.  Given a finite set of points in the plane, each with integer coordinates, is it always possible to color the points red or white so that for any straight line L parallel to one of the coordinate axes the difference (in absolute value) between the numbers of white and red points on L is not greater than 1?
IMO home
John Scholes
16 Oct 1998