|
|
A1. S is the set of all possible n-tuples (X1, X2, ... , Xn) where each Xi is a subset of {1, 2, ... , 1998}. For each member k of S let f(k) be the number of elements in the union of its n elements. Find the sum of f(k) over all k in S.
|
|
A2. Show that (36m + n)(m + 36n) is not a power of 2 for any positive integers m, n.
|
|
A3. Prove that (1 + x/y)(1 + y/z)(1 + z/x) ≥ 2 + 2(x + y + z)/w for all positive reals x, y, z, where w is the cube root of xyz.
|
|
A4. ABC is a triangle. AD is an altitude. X lies on the circle ABD and Y lies on the circle ACD. X, D and Y are collinear. M is the midpoint of XY and M' is the midpoint of BC. Prove that MM' is perpendicular to AM.
|
|
A5. What is the largest integer divisible by all positive integers less than its cube root.
|
|