|
|
A1. Find all real sequences x1, x2, ... , x1995 which satisfy 2√(xn - n + 1) ≥ xn+1 - n + 1 for n = 1, 2, ... , 1994, and 2√(x1995 - 1994) ≥ x1 + 1.
|
|
A2. Find the smallest n such that any sequence a1, a2, ... , an whose values are relatively prime square-free integers between 2 and 1995 must contain a prime. [An integer is square-free if it is not divisible by any square except 1.]
|
|
A3. ABCD is a fixed cyclic quadrilateral with AB not parallel to CD. Find the locus of points P for which we can find circles through AB and CD touching at P.
|
|
A4. Take a fixed point P inside a fixed circle. Take a pair of perpendicular chords AC, BD through P. Take Q to be one of the four points such that AQBP, BQCP, CQDP or DQAP is a rectangle. Find the locus of all possible Q for all possible such chords.
|
|
A5. f is a function from the integers to {1, 2, 3, ... , n} such that f(A) and f(B) are unequal whenever A and B differ by 5, 7 or 12. What is the smallest possible n?
|
|