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Cyklotomické polynomy
Natália Bátorová

Abstrakt. Na přednášce si ukážeme některé základní vlastnosti cyklotomických po-
lynomů, které mají řadu aplikací ve vysokoškolské i pokročilé olympiádní matematice.
Nabyté znalosti využijeme v elegantních důkazech speciálního případu Dirichletovy
věty a Zsigmondyho věty.

Cyklotomické polynomy jsou objektem, se kterým se přirozeně setkáme, koukáme-
li se na rozklady polynomů tvaru xn − 1 pro přirozená n. Pojďme si ale nejdříve
představit několik pojmů a tvrzení, bez nichž se neobejdeme:

Definice. O polynomu řekneme, že je monický, pokud je jeho vedoucí koeficient
roven 1.

Okruhem rozumíme množinu K, ve které umíme sčítat, odčítat a násobit podle
všech obvyklých pravidel (přičemž násobení nemusí být komutativní a výsledky
těchto operací jsou opět prvky K).

Definice. Je-li K okruh, tak okruh polynomů nad K (značíme K[x]) je množinou
polynomů jedné proměnné, jejichž koeficienty leží v K. Budeme pracovat s okruhy
R[x], C[x], Q[x], Z[x] a Zp[x].

Definice. O polynomu P ∈ K[x] řekneme, že je ireducibilní nad K, pokud neexis-
tují nekonstantní polynomy Q,R ∈ K[x] takové, že P = QR.

Věta. Pro libovolné těleso K má nenulový polynom P (x) ∈ K[x] stupně n nejvýše
n kořenů v K.

Věta. (Základní věta algebry) Nenulový polynom P (x) ∈ C[x] stupně nmá (včetně
násobnosti) právě n kořenů v C.

Věta. (Dělení se zbytkem) Pro libovolné nenulové polynomy P (x), Q(x) ∈ K[x]
existují jednoznačně dané polynomy A(x), B(x) ∈ K[x], pro které platí P (x) =
A(x)Q(x) +B(x) a deg(B) < deg(Q).

Věta. (Gaussova) Je-li monický polynom ireducibilní nad Z[x], pak je ireducibilní
i nad Q[x].

Definice. O čísle α ∈ C řekneme, že je algebraické, pokud existuje monický po-
lynom P ∈ Q[x], jehož je α kořenem. Má-li navíc P ze všech takových polynomů
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CYKLOTOMICKÉ POLYNOMY

nejnižší možný stupeň, tak ho nazýváme minimálním polynomem α, deg(P ) pak
nazýváme stupněm α.

Definice. O komplexním čísle z řekneme, že je odmocninou z jedné, pokud je
kořenem polynomu zn − 1 pro nějaké přirozené n. Pokud navíc pro všechna čísla
menší než n platí zn 6= 1, tak je z primitivní n-tou odmocninou z jedné. Dále budeme
značit ωn = e

2πi
n .

Definice. Pro libovolné přirozené n definujeme cyklotomický polynom jako

Φn(x) =
∏

1≤i≤n, gcd(n,i)=1

(x− ωin).

Cvičení. Spočtěte si několik prvních cyklotomických polynomů. Jaký je řád poly-
nomu Φn(x)?

Cvičení. Rozmyslete si, že Φn je monický polynom, jehož kořeny jsou právě pri-
mitivní n-té odmocniny jedné.

Cvičení. Nahlédněte, že platí
∏
d|n Φd(x) = xn − 1. Z toho odvoďte známou

identitu n =
∑
d|n ϕ(d).

Věta. Pro libovolné přirozené n má polynom Φn(x) celočíselné koeficienty.

Cvičení. Dokažte, že Φn(x) je reciproký pro n ≥ 2, tj. že pro jeho koeficienty ai
platí aϕ(n)−i = ai.

Cvičení. Ukažte, že součet primitivních n-tých odmocnin z jedné je roven µ(n),
kde µ je Möbiova funkce

µ(n) =


1, n = 1,

(−1)r, n = p1 · p2 · · · pr součin r různých prvočísel,

0, jinak.

Věta. Je-li p prvočíslo a n jeho násobek, pak platí Φnp(x) = Φn(xp). Pokud n není
dělitelné p, pak platí Φnp(x)Φn(x) = Φn(xp).

Cvičení. Spočtěte si několik dalších cyklotomických polynomů pomocí minulé
věty.

Cvičení. Rozmyslete si, že pro lichá n ≥ 3 platí Φ2n(x) = Φn(−x).

Cvičení. Ukažte, že pro nesoudělná n, a platí Φn(xa) =
∏
d|a Φnd(x).

Věta. (MFV pro polynomy) Buď p prvočíslo, x celé číslo a f(x) polynom s celočí-
selnými koeficienty. Potom platí f(xp) ≡ f(x)p (mod p).

Věta. Φn(x) je ireducibilní v Z[x] pro libovolné přirozené n.
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Řády a nesoudělnost

Věta. Pro přirozené číslo n a prvočíslo p takové, že gcd(n, p) = 1, neexistuje žádný
nekonstantní polynom m ∈ Zp[x] takový, že m2(x) | xn − 1.

Věta. Není-li mn dělitelné prvočíslem p pro m 6= n, pak jsou v Zp[x] polynomy
Φm(x) a Φn(x) nesoudělné.

Věta. Buď p prvočíslo. Potom pro libovolné celé t a libovolné přirozené n, nesou-
dělné s p, platí p | Φn(t) ⇐⇒ ordp(t) = n.

Cvičení. Rozmyslete si, že z minulého cvičení vyplývá existence primitivního prv-
ku modulo p.

Věta. Buďte m,n různá přirozená čísla. Jsou-li hodnoty Φm(t) a Φn(t) soudělné
pro nějaké celé t, pak existuje prvočíslo p a celá čísla k, `, pro něž m

n = pk

a gcd(Φm(t),Φn(t)) = p`.

Věta. (Schurova věta) Množina hodnot libovolného nekonstantního polynomu P ∈
Z[x] v přirozených číslech má nekonečně mnoho prvočíselných dělitelů.

Věta. (slabší Dirichletova věta) Aritmetická posloupnost {an + 1}∞n=1 obsahuje
nekonečně mnoho prvočísel pro libovolné přirozené a.

Zsigmondyho věta

Věta. (Zsigmondy) Jsou-li a > b nesoudělná přirozená čísla, tak pro libovolné
přirozené n (tedy až na níže uvedené výjimky) existuje prvočíslo p, jež dělí an − bn,
ale nikoliv ai− bi pro 1 ≤ i < n (tzv. primitivní prvočíselný dělitel). Jediné výjimky
tvoří následující případy:

(1) n = 1 a a− b = 1
(2) n = 2 a a+ b = 2k pro k ∈ Z
(3) a = 2, b = 1, n = 6

Analogické tvrzení platí i pro an + bn, až na výjimku a = 2, b = 1, n = 3.

Cvičení. Existence primitivního prvočíselného dělitele an−1 je ekvivalentní s tím,
že Φn(a) má prvočíselného dělitele nesoudělného s n.

Cvičení. Rozmyslete si, že stačí dokázat Zsigmondyho větu jen pro rozdíl a pouze
v případě b = 1.

Věta. Předpokládejme, že pro přirozená a, n > 1 jsou všechny dělitele Φn(a)
zároveň děliteli n. Potom buď n = 2 nebo Φn(a) je prvočíslo.

Věta. Buďte a, n > 1 přirozená čísla. Nechť n = pkr pro prvočíslo p a r nesoudělné
s p. Potom Φn(a) > (bp − bp−2)ϕ(r) pro b = ap

k−1
.
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Příklady

Úloha 1. Dokažte, že žádné z čísel 10001, 100010001, . . . není prvočíslo.
(Britská MO)

Úloha 2. Najděte všechny dvojice celých čísel (x, y) splňující x7−1
x−1 = y5 − 1.

(IMO 2006 SL)

Úloha 3. Buď n > 2 liché číslo a S ⊂ {1, . . . , n}. Označme dále ti počet neprázd-
ných podmnožin S, které mají součet prvků kongruentní s i modulo n. O množině
S řekneme, že je n-vyvážená, pokud platí t0 = t1 = · · · = tn−1.

(1) Ukažte, že existuje n-vyvážená množina pro libovolné liché n.
(CPS 2016)

(2) Ukažte, že Z∗n je n-vyvážená.

Úloha 4. Dokažte, že cos
(
2π
n

)
je algebraické číslo. Jaký je jeho stupeň?

Úloha 5. Buď X neprázdná podmnožina vrcholů pravidelného n-úhelníka. O X
řekneme, že je křupavoučká, pokud její těžiště splývá s těžištěm celého n-úhelníku.
Charakterizujte všechny křupavoučké množiny pro:

(1) n rovné mocnině prvočísla;
(2) n rovné součinu dvou prvočísel;
(3) co nejobecnější možné n.

Úloha 6. Dokažte, že pro různá lichá prvočísla p1, . . . , pn má 2p1···pn + 1 alespoň
22
n−1

dělitelů. (silnější IMO 2002 SL)

Úloha 7. Najděte všechna přirozená n, pro která je 2
n+1
n2 celé číslo.

(IMO 1990)

Úloha 8. Dokažte, že pokud všechny kořeny p ∈ Z[x] leží na jednotkové kružnici,
pak už jsou to nutně odmocniny z jedné. (Kroneckerova věta)

Úloha 9. Pro dané přirozené číslo k charakterizujte všechny polynomy p ∈ Z[x],
pro které je p(xk) dělitelné p(x).

Úloha 10. Ukažte, že
∑
1≤i≤n, gcd(n,i)=1 ω

ki
n je celé číslo pro libovolná přirozená

k, n. Obecněji: je-li p symetrický polynom ϕ(n) proměnných s celočíselnými koefici-
enty, tak jeho hodnota v kořenech Φn(x) je celé číslo.

Úloha 11. Je-li ω odmocnina z jedničky a f ∈ Z[x], pro které platí |f(ω)| = 1,
pak je f(ω) rovněž odmocnina z jedničky.

Úloha 12. Ukažte, že pro nekonečně mnoho přirozených čísel n jsou všichni prvo-
číselní dělitelé n2 + n+ 1 menší než

√
n.

Úloha 13. (pro odvážné) Ukažte, že se každé celé číslo objeví jako koeficient ně-
kterého cyklotomického polynomu.

6



NATÁLIA BÁTOROVÁ

Úloha 14. (dávka abstraktní algebry) Nechť a, b, c, d jsou primitivní n-té odmoc-
niny z jedné. Určete hodnotu n, platí-li a+ b+ c+ d = 1.

Návody

1. Rozlož na cyklotomické polynomy.

2. Pracuj modulo 7.

3. Pro první část použij binárku. Ve druhé využij, že pro p ∈ C[x] je 1n
∑n−1
i=0 p(ω

i
n)

součet koeficientů p, u kterých je exponent x dělitelný n.

4. cos(x) = eix+e−ix

2 , stupeň vyjde ϕ(n)
2 pro n > 2.

5. Použij analytiku v Gaussově rovině a dělitelnost cyklotomickými polynomy. Jo,
a třetí část je open :D.

6. Rozložte na cyklotomické polynomy.

7. Nejprve pomocí MFV ukaž, že nejmenší prvočíselný dělitel n je trojka. Pak
pomocí rozkladu na CP ukaž, že devítka nedělí n. Dokonči zase přes prvočíselné
dělitele.

8. Jsou-li kořeny p z1, . . . , zn, tak se dívej na polynomy pk s kořeny zk1 , . . . , z
k
n.

Ukaž, že existuje takové k, pro které platí pk(x) = p(x).

9. Použij minulý příklad a zapoj do toho cyklotomické polynomy.

10. Celočíselnost koeficientů Φn(x) a Newtonovy vztahy/základní věta symetric-
kých polynomů.

11. Ukaž, že je-li Φn(ω) = 0, pak Φn(x) | f(x)f(xn−1) − 1; z toho odvoď
|f(ωk)| = 1 pro (k, n) = 1 a z minulého cvičení

∏
(k,n)=1 (x− f(ωk) ∈ Z[x], pak

je to jen Kronecker.

12. Zvol n = km a rozlož Φ3(km) na součin, pak využij toho, že ϕ(n)
n může být

libovolně blízko nule.

13. Je to dost kencr, kdo to dá, dostane lízátko ;).

14. Pro (k, n) = 1 uvaž automorfismy fk z Q[ωn], které zobrazí ωn na ωkn. Po
sečtení fk(L) = fk(P ) přes všechna k dostaneme, že musí platit 4µ(n) = ϕ(n).

Literatura a zdroje

Chtěla bych poděkovat Danilu Koževnikovi, jehož příspěvek jsem téměř beze změn
převzala.

[1] https://imosuisse.ch/smo/skripte/imovorbereitung/rootsofunity/en-roots
ofunity.pdf

[2] http://yufeizhao.com/olympiad/exponent-lifting-sol.pdf
[3] Lawrence Sun: Cyclotomic polynomials in olympiad number theory

7

https://imosuisse.ch/smo/skripte/imovorbereitung/rootsofunity/en-roots
elax unskip unkern penalty -@M ofunity.pdf
https://imosuisse.ch/smo/skripte/imovorbereitung/rootsofunity/en-roots
elax unskip unkern penalty -@M ofunity.pdf
http://yufeizhao.com/olympiad/exponent-lifting-sol.pdf


Překlápění tečen
Káťa Danilina

Abstrakt. S tečnami se setkáváme například v olympiádní geometrii poměrně čas-
to. V přednášce se podíváme na některé jejich základní vlastnosti a ukážeme si, jak si
s jejich pomocí poradit i s těžšími příklady.

Při pohledu na příklad, kde se vyskytují tečny, bývá mnohdy první myšlenkou
využít úsekové úhly, které nám tečny poskytují. Přestože úhlení je velmi častou a
spolehlivou technikou v řešení geometrických příkladů, zdaleka ne vždy je elegantní
a ne vždy také vede ke kýženému cíli. Ukážeme si proto některé, někdy snad trochu
opomíjené vlastnosti tečen skýtající nám jinou cestu řešení.

Tvrzení. Mějme kružnici k a bod A ležící vně kružnice. Veďme bodem A tečny ke
k, body dotyku s kružnicí označme B, C. Pak |AB| = |AC|.

A

B

C

k

Tvrzení. Kružnice vepsaná trojúhelníku ABC se dotýká stran BC, CA a AB po
řadě v bodech D, E a F . Potom |AE| = |AF | = −a+b+c

2 .

Tvrzení. V trojúhelníku ABC se kružnice připsaná straně BC dotýká přímek BC,
CA, AB po řadě v bodech D, E, F . Pak platí, že

(i) |AE| = |AF | = a+b+c
2 ,

(ii) |BD| = |BF | = a+b−c
2 , |CD| = |CE| = a−b+c

2 ,
(iii) body dotyku s vepsanou a připsanou kružnicí jsou středově souměrné podle

středu příslušné strany.
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Cvičení. Nechť jsou přímky p a q společnými vnějšími tečnami kružnic k1 a k2.
Přímka p se kružnice k1 dotýká v bodě A a kružnice k2 v bodě B, přímka q se
kružnic dotýká v bodech C a D. Dokažte, že pak platí:

(i) |AB| = |CD|,
(ii) pokud se kružnice neprotínají a jejich vnitřní tečna r protíná přímky p a q

v bodech X a Y , pak |AB| = |CD| = |XY |.

První krůčky

Úloha 1. Dokažte, že v pravoúhlém trojúhelníku ABC s pravým úhlem u vrcholu
A je poloměr vepsané kružnice roven s−|BC|, kde s je polovina obvodu trojúhelníku
ABC.

Úloha 2. Mějme kružnici k se středem S o poloměru 1 a bod P takový, že |PS| = 3.
Tímto bodem veďme tečny ke kružnici k, které se jí dotknou v bodech A, B. Dále
si zvolme libovolný bod T kratšího oblouku AB kružnice k a jím veďme tečnu ke
k. Tato tečna protne úsečky AP a BP v bodech X a Y . Určete obvod trojúhelníku
PXY . (Náboj 2008)

Úloha 3. Je dán trojúhelník ABC s kružnicí vepsanou k, kde |AB| = 6, |BC| = 7,
|CA| = 8. Body X a Y leží uvnitř stran AB a AC tak, že XY je tečna kružnice k.
Určete obvod trojúhelníku AXY .

Úloha 4. Mějme trojúhelník ABC. Nakreslíme tři tečny k jeho vepsané kružnici
tak, že každá odřízne jiný z vrcholů trojúhelníku. Obvody odříznutých trojúhelníků
jsou 1, 2 a 3. Dokažte, že původní trojúhelník byl pravoúhlý. (MKS 32–6–3)

Úloha 5. Sestrojte trojúhelník ABC, znáte-li jeho obvod o, poloměr ρ kružnice
připsané ke straně BC a velikost výšky v na tuto stranu. (MO 68–A–I–5)

Úloha 6. V daném trojúhelníku ABC označme D bod dotyku kružnice vepsané
se stranou BC. Kružnice vepsaná trojúhelníku ABD se dotýká stran AB a BD
v bodech K a L. Kružnice vepsaná trojúhelníku ADC se dotýká stran DC a AC
v bodech M a N . Dokažte, že body K, L, M , N leží na jedné kružnici.

(MO 64–A–I–5)

Úloha 7. Je dán rovnoběžník ABCD, kde |AB| > |BC|. Body K a M jsou body
dotyku kružnic vepsaných trojúhelníkům ACD a ABC s úhlopříčkou AC. Body L a
N jsou obdobně body dotyku kružnic vepsaných trojúhelníkům BCD a ABD s BD.
Dokažte, že KLMN je obdélník. (MO 54–A–I–2)

Úloha 8. Je dán ostroúhlý trojúhelník ABC. Na polopřímce opačné k polopřímce
BC leží bod P takový, že |AB| = |BP |. Analogicky na polopřímce opačné k polo-
přímce CB leží bod Q takový, že |AC| = |CQ|. Označme J střed kružnice připsané
straně BC daného trojúhelníku a D, E po řadě její body dotyku s přímkami AB a
AC. Předpokládejme, že polopřímky opačné k polopřímkám DP a EQ se protínají
v bodě F různém od J . Dokažte, že AF ⊥ FJ . (MO 68–A–III–4)
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Úloha 9. Trojúhelník ABC má obvod 8. Uvnitř stran AB, AC jsou postupně
zvoleny body D, E tak, že DE ‖ BC a zároveň je DE tečnou kružnice vepsané
trojúhelníku ABC. Jaká je největší možná délka DE? (Kyjev TST 2019)

Tečnové čtyřúhelníky

Tvrzení. (o tečnovém čtyřúhelníku) Je dán čtyřúhelník ABCD, který má vepsa-
nou kružnici (dotýká se všech čtyř stran). Ukažte, že |AB|+ |CD| = |BC|+ |AD|.
Úloha 10. Je dán rovnoběžník ABCD, přičemž |AB| = 2 · |BC|. Určete všechny
přímky, které dělí daný rovnoběžník na dva tečnové čtyřúhelníky.

(MO 64–A–S–2)

Úloha 11. Je dán čtyřúhelník ABCD takový, že |AB| + |CD| = |BC| + |AD|.
Dokažte, že kružnice vepsané trojúhelníkům ABC a ADC se úhlopříčky AC dotýkají
v jednom bodě.

Úloha 12. Je dán čtyřúhelník ABCD takový, že |AB| + |BC| = |CD| + |AD|.
Kružnice vepsané trojúhelníkům ABD a CBD se úhlopříčky BD dotýkají v bodech
X a Y . Dokažte, že body X a Y jsou stejně vzdáleny od středu úsečky BD.

Úloha 13. Na přímce a, na níž leží strana BC trojúhelníku ABC, jsou dány body
dotyku všech tří jemu připsaných kružnic (body B a C nejsou známy). Najděte na
této přímce bod dotyku kružnice vepsané. (MO 63–B–I–3)

Úloha 14. Uvnitř stran BC, CA, AB daného trojúhelníku ABC zvolíme po řadě
body D, E, F tak, aby se úsečky AD, BE, CF proťaly v jednom bodě, který
označíme G. Pokud lze čtyřúhelníkům AFGE, BDGF , CEGD vepsat kružnice,
z nichž každé dvě mají vnější dotyk, pak je trojúhelník ABC rovnostranný. Dokažte.

(MO 52–A–III–2)

Úloha 15. Mějme trojúhelník ABC s obvodem 4. Na polopřímkách AB a AC
označme postupně body X, Y tak, že |AX| = |AY | = 1 a úsečky BC a XY se
protínají v bodě M . Dokažte, že alespoň jeden z trojúhelníků ABM , ACM má
obvod 2. (Rusko 2011)

Úloha 16. Nechť Γ je kružnice se středem I a ABCD konvexní čtyřúhelník, jehož
strany AB, BC, CD a DA jsou tečnami kružnice Γ a Ω je kružnice opsaná trojúhel-
níku AIC. Polopřímka BA protíná kružnici Ω v bodě X, který leží za bodem A, a
polopřímka BC protíná Ω v bodě Z, který leží za bodem C. Polopřímky AD a CD
protínají kružnici Ω po řadě v bodech Y a T , které leží za bodem D. Dokažte, že

|AD|+ |DT |+ |TX|+ |XA| = |CD|+ |DY |+ |Y Z|+ |ZC|.

(IMO 2021 – 4)
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KÁŤA DANILINA

Návody

1. Čím je zajímavý čtyřúhelník AP1IP2, kde I je střed kružnice vepsané a P1, P2
jsou její body dotyku s odvěsnami?

2. Co víme o úsečce PB?

3. Nechť P je bod dotyku kružnice k a strany AB. Pomůže nám pak délka úsečky
AP?

4. Zkus využít poznatky z minulého příkladu.

5. Umíme z kružnice připsané získat bod A? Je pak BC tečna ještě nějaké jiné
kružnice?

6. Zkus dokázat, že se osy úseček KL, LM a MN protínají v jednom bodě, kon-
krétně ve středu kružnice vepsané trojúhelníku ABC.

7. Dokaž pomocí překlápění tečen, že v KLMN se úhlopříčky půlí a jsou stejně
dlouhé.

8. Dokaž, že F leží na kružnici opsané čtyřúhelníku ADJE, tedy že |^ADP | =
|^AEF |.
9. Zkus si vyjádřit DE pomocí BC. Najdi vrchol paraboly popisující onu kvadra-
tickou rovnici vyjádření.

10. Dokaž, že pokud ABCD není obdélník, pak takové přímky existují právě dvě,
obě prochází průsečíkem úhlopříček a na rovnoběžníku vytínají úsečky délky BC.
Jak je tomu pro obdélník?

11. Vyjádři si vzdálenosti bodů dotyku jednotlivých kružnic s AC a dokaž, že se
rovnají.

12. Dokaž, že |BX| = |DY |, a zamysli se, proč tím už máme vyhráno.

13. Označíme body dotyků postupně X, Y a Z, dokaž, že |BX| = |CZ|, a sestroj
střed úsečky BC.

14. Uvědom si, že kružnice vepsaná čtyřúhelníku AFGE je zároveň kružnicí ve-
psanou trojúhelníkům ABE a AFC, a vyjádři velikost tečen. Dokaž, že přímky AD,
BE a CF jsou osy vnitřních úhlů trojúhelníku ABC, a využij jejich vlastnosti.

15. Dokresli připsanou kružnici k ABC a kružnici se středem v A a nulovým
poloměrem.

16. Vyúhli, že |TI| = |ZI| a |XI| = |Y I|, pak počítej s tečnami.

Literatura a zdroje

Chtěla bych poděkovat Ádi Káji Žáčkové, od níž jsem příspěvek s malými úpravami
převzala, která již poděkovala Aničce Doležalové a Ádi Kostelecké.

[1] Adéla Karolína Žáčková: Překlápění tečen, Zásada, 2021.
[2] Stránky matematické olympiády, http://www.matematickaolympiada.cz.
[3] Art of problem solving, https://artofproblemsolving.com.
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Stromy
Vojta Gaďurek

Abstrakt. V příspěvku důkladně prozkoumáme, co jsou to stromy a kde všude je
můžeme nalézt.

Definice. Graf je tvořen množinou V vrcholů a množinou E hran mezi nimi. Hrany
jsou formálně dvouprvkové množiny vrcholů. Celý graf pak formálně zapisujeme jako
uspořádanou dvojici G = (V,E).

1 2 3 4

56

7

8

9

10
11 V = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11},

E =
{
{1, 6}, {2, 6}, {3, 5}, {4, 5}, {5, 6},

{6, 7}, {7, 8}, {6, 8}, {8, 9}, {8, 10},

{5, 10}, {9, 10}, {10, 11}
}

Úmluva. Neřekneme-li jinak, předpokládejme, že graf je konečný, tedy V i E jsou
konečné množiny, a že graf je neprázdný, tudíž obsahuje alespoň jeden vrchol.

Definice. Podgrafem grafu G je graf, který vznikl odebráním nějakých vrcholů a
hran z grafu G.

Definice. Cesta je graf s vrcholy V = {a1, a2, . . . , an} a hranami E = {{a1, a2},
{a2, a3}, . . . , {an−1, an}}. Cesta tedy prochází každým vrcholem právě jednou. Vr-
cholům a1 a an říkáme koncové body cesty. Obsahuje-li graf jako podgraf cestu
s koncovými vrcholy A a B, říkáme, že existuje/vede cesta mezi A a B.

a1 a2 . . . an−1 an

a1

a2

. . .

an−1

an

Definice. Kružnicí nazveme graf s vrcholy V = {a1, a2, . . . , an} a hranami E =
{{a1, a2}, {a2, a3}, . . . , {an−1, an}, {an, a1}}.
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VOJTA GAĎUREK

Definice. Říkáme, že graf je souvislý, pokud mezi každými dvěma vrcholy vede
cesta.

Definice. Graf je acyklický, pokud neobsahuje jako podgraf žádnou kružnici.

Cvičení. Ať G = (V,E) je souvislý graf. Které z následujících vlastností jsou
ekvivalentní?

(i) graf splňující |V | − 1 = |E|, tedy že počet vrcholů je o jedna vyšší než počet
hran;

(ii) graf, v němž mezi každými dvěma vrcholy existuje právě jedna cesta;
(iii) 2-obarvitelný graf, tj. jeho vrcholy lze obarvit dvěma barvami tak, aby žádné

dva stejnobarevné vrcholy nebyly spojeny hranou;
(iv) minimálně souvislý graf, tedy takový, který je souvislý, ale odebráním libo-

volné hrany by své souvislosti pozbyl;
(v) maximálně acyklický graf, tedy pokud bychom přidali jednu hranu, graf by

již nebyl acyklický.

Pokud jste cvičení poctivě řešili, zjistili jste, že ekvivalentní jsou charakterizace
(i), (ii), (iv) a (v), zatímco charakterizace (iii) je slabší. Tedy jako definici stromu
bychom mohli použít libovolnou z těchto čtyř. My použijeme charakterizaci (ii).

Definice. Strom je souvislý graf, v němž mezi každými dvěma vrcholy existuje
právě jedna cesta.

Definice. Podgraf stromu, který je sám také stromem, nazýváme podstromem.

Věta. Souvislý podgraf stromu je vždy strom.

Definice. List je vrchol, do něhož vede právě jedna hrana.

Cvičení. Ukažte, že libovolný strom o alespoň dvou vrcholech má alespoň dva
listy.

Definice. Stupeň vrcholu je počet hran, které do něj vedou.

Cvičení. Jaká (pokud nějaká) je ve stromu spojitost mezi stupni jednotlivých
vrcholů a počtem listů?

Úmluva. (zakořenění) Občas se nám hodí strom zakořenit: vybereme jeden vrchol,
který se stane kořenem, a následně budeme všechny hrany kreslit směrem dolů od
kořene. Pokud pak vede hrana mezi A, B a B je dál (tedy níž) od kořene než A,
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říkáme, že A je otec B, zatímco B je syn A. Obecněji pokud z A vede cesta „dolůÿ
do B, pak je A předkem B, zatímco B je potomkem A.

Definice. Hloubka zakořeněného stromu je počet hran v nejdelší cestě vedoucí
z kořene do nějakého vrcholu grafu.

Definice. Pro reálné C říkáme, že nějaký strom má C-logaritmickou hloubku, má-li
n vrcholů a hloubku nanejvýš C log(n).

Úlohy

Úloha 1. V lese žije n entů a jedna veverka. Entové stojí na místě, některé dvojice
z nich jsou si přitom dost blízko na to, aby mezi nimi zvládla veverka přeskočit.
Shodou okolností jsou entové rozestaveni tak, že mezi libovolnými dvěma z nich
existuje právě jedna cesta, po které může veverka přeskákat. Vzdáleností dvou entů
rozumíme počet skoků, které veverka potřebuje k tomu, aby se mezi nimi přesunula.
Osamělost enta definujeme jako součet jeho vzdáleností od všech ostatních entů.
Dokažte, že pokud se osamělosti některých dvou entů liší právě o 1, pak je n liché.

(PraSe 41–1j–4)

Úloha 2. (hloubka stromu I) Mějme nějaký zakořeněný strom, pro který platí:

• Každý vrchol má nanejvýš dva syny.
• Má-li jediného syna, pak tento syn musí být listem.
• Má-li dva syny, označme je jako levý a pravý – pak je počet potomků pravého

roven nebo o 1 větší počtu potomků levého.

Umíme zkonstruovat takový strom pro libovolný počet vrcholů? A umíme pevně
zvolit nějaké C tak, aby zkonstruované stromy měly C-logaritmickou hloubku?

Úloha 3. (hloubka stromu II) Mějme nějaký zakořeněný strom, pro který platí:

• Každý vrchol má nanejvýš dva syny.
• Má-li jediného syna, pak tento syn musí být listem.
• Má-li dva syny, označme je jako levý a pravý – pak se hloubky podstromu

tvořeného levým synem a jeho potomky liší od toho tvořeného pravým synem
a jeho potomky nanejvýš o 1.

Umíme zkonstruovat takový strom pro libovolný počet vrcholů? A umíme pevně
zvolit nějaké C tak, aby zkonstruované stromy měly C-logaritmickou hloubku?

Úloha 4. (hloubka stromu III) Existují jiná pravidla, která nám zajistí C-logarit-
mickou hloubku?

Úloha 5. Mějme nějaký souvislý graf. Dokažte, že dvě nejdelší cesty procházejí
stejným vrcholem.

Úloha 6. (záchodový problém I) Petr se rozhodl založit si továrnu na potrubí. V ní
začal vyrábět různé rozdvojky, roztrojky, obecněji rozbočovače (neboli rozenky). Do
každé rozenky vede právě jedna (vstupní) trubka a n (výstupních) jich z ní vychází.
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Petr se navíc rozhodl konce jednotlivých trubek obarvit. Výstupní trubku lze zapojit
do výstupní, pokud mají stejné barvy. Jediným problémem je, že každý nový typ
rozenky musí vyrábět na novém stroji.

Pan Karel podniká ve stavbě toalet na školách. Rád by, aby každé záchody byly
tvořeny řadou toalet o počtu dělitelném pěti, do každé toalety vedla právě jedna
trubka a aby byly všechny napojeny systémem rozenek na jednu vstupní trubku.
Ví však, že jeho dělníci jsou hajdaláci, chtěl by tedy, aby počet toalet (volných
výstupních trubek) musel vždy být dělitelný pěti, ať už budou dělníci skládat rozenky
jakkoliv. Zvládne to Petr zajistit, pokud si může dovolit pouze konečný počet strojů?

Úloha 7. (záchodový problém II) Pan Karel znovu přišel za panem Petrem –
nyní by potřeboval, aby počet záchodů byl prvočíselný. Zvládne to Petr s konečným
počtem strojů?

Úloha 8. (záchodový problém III) Pan Karel znovu přišel za panem Petrem, nyní
má zakázku na stavbu toalet do školky. Malé děti mají rady barvy, a tak si školka
přeje, aby záchody byly tří barev (žluté, červené a modré). Aby se děti nehádaly,
musí být každá barva zastoupena stejným počtem. Zvládne to Petr s konečným
počtem strojů? A zvládl by to, pokud by školka požadovala jen dvě barvy?

Úloha 9. (záchodový problém IV) Pan Karel přišel za panem Petrem s otázkou,
zdali umí vymyslet sadu rozenek takovou, že každé rozmístění barev záchodů bude
možné vytvořit jen jedním způsobem. Zvládne to Petr s konečným počtem strojů?

Úloha 10. Do tenisového turnaje se přihlásilo 2n soutěžících. V každém kole se
všichni ještě nevypadlí hráči rozdělí do dvojic a odehrají zápas. Vítězové postupují
do dalšího kola, poražení vypadávají. Na konci turnaje, když zůstane pouze jediný
hráč, je potřeba vytvořit výsledkovou listinu, ve které nikdo nesmí být na horší pozici
než hráč, kterého porazil. Kolika způsoby je možné takové pořadí vytvořit, pokud
žádní dva hráči nesmí skončit na stejné příčce? (PraSe 31–1p–7)

Úloha 11. (vejce a patra) Mějme věžák s n patry a k vajec. Naším úkolem je
zjistit, z jakého nejnižšího patra se vejce po vyhození z okna rozbije. Pro dané n
a k zjistěte, kolikrát budeme muset vajíčkem házet, ať se vajíčko začne rozbíjet od
libovolného patra.

Úloha 12. (kuchařková věta) Na matfyzu rádi vaříme čaj. Ale vařit čaj není zas
tak jednoduché – je nutné plnit pravidla přísné etikety jeho vaření. Postup je však
snadný:

Chceme-li uvařit čaj z počátečního nálevu n litrů, pak:

• Čaj povaříme po dobu cnα minut v konvičce.
• Následně rozlijeme čaj do k dalších konviček: do i-té konvičky nalijeme ain

litrů, kde A = {a1, . . . , ak} je pevně zvolená množina kladných reálných čísel.
• Je-li čaje málo, naředíme ho před rozlitím vodou. Pokud naopak po rozlití

nějaký čaj přebývá, vylijeme ho.
• Je-li v nějaké konvičce méně čaje než n0, potom čaj z této konvičky serví-
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rujeme. Pro ostatní konvičky celý postup opakujeme, dokud není servírován
všechen čaj.

Jak dlouho nám potrvá připravit čaj pro daná n, A a n0, máme-li neomezenou
zásobu konviček, ale pouze jednu plotnu?

Úloha 13. (Hydra a Herkules) Mějme Hydru v podobě stromu s kořenem H.
Herkules může useknout libovolný list. Pokud usekne list L s otcem X, nastane
jedna z dvou situací. Pokud X = H, po useknutí L se nic nestane. V opačném
případě má X otce, označme ho Y , a nechť S je podstrom tvořený vrcholem X
a všemi jeho potomky (po useknutí L). Pak se v důsledku useknutí takového L
zkopíruje odpovídající podstrom S jako nové potomstvo Y , tzn. Y bude mít nového
syna X ′, který bude mít nové syny odpovídající synům X atd.

Umí Herkules sekat tak, aby Hydře po konečném počtu seknutí zbyl jen samotný
kořen?

Úloha 14. Umí Herkules sekat donekonečna tak, aby Hydře nikdy nezbyl jen sa-
motný kořen?

Návody

12. Nechť S :=
∑
ai∈A a

α
1 . Zkus úlohu řešit zvlášť v případech S < 1, S = 1 a

S > 1.

Literatura a zdroje:

Tuto geniální přednášku jsem převzal od Bc. Vojtěcha Gaďurka. Moc mu za to
děkuji.

[1] Martin Mareš, Tomáš Valla: Průvodce labyrintem algoritmů, CZ.NIC, 2017.
[2] Martin Mareš: Diskrétní Matematika, https://mj.ucw.cz/vyuka/2122/dm/.
[3] Vladan Majerech: Cvičení z předmětu Automaty a gramatiky,

http://ktiml.mff.cuni.cz/̃ maj/2022NTIN071.html.
[4] Vladan Majerech: Cvičení z předmětu Algoritmy a datové struktury 1,

http://ktiml.mff.cuni.cz/̃ maj/2022NTIN060.html.
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Pravděpodobnostní paradoxy
Vít Hanika

Abstrakt. Podíváme se na některé matematické paradoxy. Pravděpodobně budete
překvapeni.

Paradox 1. David každý víkend jezdí z plzeňského nádraží buď za manželkou do
Dobřan, nebo za milenkou do Rokycan. Rozhoduje se náhodně – vždy nastoupí do
prvního vlaku, který jede. Ačkoli vlaky do Rokycan jezdí stejně často jako vlaky
do Dobřan, po nějakém čase David shledal, že byl u milenky dvakrát častěji než
u manželky. Jak je to možné?

Paradox 2. Kenny, Franta a Jarda se rozhodli, že si zahrají tenis. Kenny se s nimi
vsadil o kilo čokolády, že vyhraje dvakrát po sobě. Může si vybrat ze dvou možností:
buď bude hrát nejprve s Frantou, pak s Jardou a nakonec s Frantou, nebo nejprve
s Jardou, pak s Frantou a nakonec s Jardou. Kterou z možností si má zvolit, jestliže
ví, že Jarda hraje podstatně lépe než Franta, aby zvýšil svoji šanci na výhru?

Paradox 3. Do 100místného letadla nastupuje 100 lidí, každý má místenku na
jedno sedadlo. První nastupující ale ztratil svou místenku, a tak si sedne náhodně.
Každý další si sedne na svoje sedadlo, je-li volné, a v opačném případě si sedne na
náhodné volné sedadlo. Jaká je pravděpodobnost, že poslední příchozí si sedne na
svoje sedadlo?

Paradox 4. (Monty Hall) Ve finále televizní soutěže je za dvěma dveřmi koza a za
třetími auto, přičemž soutěžící chce auto. Postaví se tedy k jedněm dveřím, načež
moderátor otevře jedny dveře, za kterými je koza, jiné než ty, ke kterým se soutěžící
postavil (moderátor ví, co je za kterými dveřmi), a pak dá soutěžícímu možnost ještě
svou volbu dveří změnit. Vyplatí se soutěžícímu volbu dveří změnit?

Paradox 5. Pravděpodobnost, že se narodí děvče, je stejná jako pravděpodobnost,
že se narodí chlapec.

(i) Uvažme náhodnou rodinu se dvěma dětmi, v níž je starší dítě děvče. Jaká je
pravděpodobnost, že obě děti jsou děvčata?

(ii) Uvažme náhodnou rodinu se dvěma dětmi, z nichž je alespoň jedno děvče.
Jaká je pravděpodobnost, že obě děti jsou děvčata?

(iii) Uvažme rodinu se dvěma dětmi, z nichž je jedno moje kamarádka Xénie (a
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tedy děvče). Jaká je pravděpodobnost, že obě děti jsou děvčata?

Paradox 6. Přišli jsme na test jisté vzácné choroby vyskytující se u 1 % populace.
Měřil nás přístroj, který v 90 % případů odpoví správně (ve zbylých chybně), a na-
hlásil, že onou chorobou trpíme. Jaká je pravděpodobnost, že tomu tak skutečně je?

Paradox 7. (Simpsonův) Lukáš a Pepa mají oba svůj žlutý a modrý sáček a
v nich černé a bílé kuličky. Pokud Lukáš sáhne do svého žlutého sáčku, má vyšší
pravděpodobnost vytažení bílé kuličky, než kdyby sáhl do modrého. Totéž platí pro
Pepu. Oba žluté sáčky nyní sesypeme dohromady a totéž provedeme s modrými.
Rozhodněte, zda bude vyšší šance na vytáhnutí bílé kuličky u modrého sáčku, nebo
u žlutého. (MKS 43-4-1)

Paradox 8. V jisté fiktivní zemi mají tradici, že je třeba rodit děti tak dlouho,
dokud se nenarodí děvče. Bude v této zemi více chlapců, nebo děvčat?

Paradox 9. V zaškrtávácím testu můžeme na každou z pěti otázek odpovědět jed-
ním z písmen A, B, C, D, E. Za test dostaneme tolik bodů, na kolik otázek odpovíme
správně. Doslechneme-li se, že každé písmeno je použito právě jednou, vyplatí se nám
dávat takové tipy, kde je každé písmeno právě jednou? (Kromě zmíněné informace
o odpovědích nic nevíme.)

Obálky

Následuje několik podobně vypadajících, avšak různých úloh. Pozor, některé z nich
mohou být prostě trošku podvod.

Paradox 10. V jedné obálce je 100 Kč a v druhé 200 Kč. Vybereme si náhodnou,
zatím ji neotvíráme. Neznámé množství peněz v ní označíme x. V druhé obálce je
také náhodně buď 2x, nebo 0,5x. Průměrně je tak v druhé obálce 1,25x, a proto se
nám vyplatí volbu obálky změnit.

Paradox 11. Protihráč vloží do dvou obálek dvě různá reálná čísla. Následně
vás nechá si náhodně jednu vytáhnout, vy si prohlédnete číslo v ní a můžete se
rozhodnout, zda si ji necháte, nebo vyměníte za jinou. Vyhrává ten z vás, který má
na konci v ruce větší číslo. Rozhodněte, zda existuje strategie, která má nadpoloviční
šanci na výhru bez ohledu na to, která dvě čísla protihráč napsal.

Paradox 12. V jedné obálce je nějaký neznámý kladný počet peněz a v druhé
dvojnásobek. Vybereme si náhodnou a otevřeme ji. V druhé obálce je také náhodně
buď 2x, nebo 0,5x. Průměrně je tak v druhé obálce 1,25x, a proto se nám vyplatí
volbu obálky změnit.

Paradox 13. Mějme dvě obálky. Víme, že v obou je přirozené množství peněz.
Zároveň je v jedné obálce třikrát víc peněz než v druhé. Distribuce peněz v obálkách
je nasledovná: pro každou dvojici čísel (3n−1, 3n), n ≥ 1 máme pravděpodobnost 1

2n ,
že právě tyto dvě hodnoty jsou v obálkách. Otevřeme jednu obálku a podíváme se

18



VÍT HANIKA

na hodnotu peněz v ní. Pro kterou hodnotu se nám vyplatí změnit obálku? Co když
obálku neotevřeme?

Paradox 14. Je nám nabídnuta následující hra: Zaplatíme 1000 Kč, pak házíme
mincí tak dlouho, dokud nám padá panna, a následně vyhrajeme 2n−1 Kč, kde n je
počet námi provedených hodů. Vyplatí se nám tuto hru podstoupit?

Paradox 15. V n − 1 vrcholech pravidelného n-úhelníku stojí ovce, ve zbylém
vrcholu stojí vlk. V každém kroku se vlk přesune na náhodný (jeden ze dvou) sou-
sední vrchol a pokud v něm stojí ovce, tak ji sežere. Vlk se nasytí až v okamžiku,
kdy sežere n− 2 ovcí, tedy právě jedna ovce přežije. Jaká ovce má nejvyšší šanci na
přežití?

Paradox 16. Mirek je velký gurmán a vlastní pytel, ve kterém je 123 karame-
lek a 321 hašlerek. Aby si své bonbóny pořádně vychutnal, rozhodl se, že je bude
konzumovat specifickým způsobem. Když se ráno probudí, začne z pytle náhodně vy-
tahovat jeden bonbón za druhým. První bonbón vytáhne a sní – každý další bonbón
vždy vytáhne, a pokud je tento stejného typu jako předchozí, rovněž jej sní. Je-li
jiného typu, vrátí jej zpět do pytle, aby si pro tento den nezkazil chuť. Tím Mirkův
ranní rituál končí. Uvedeným způsobem konzumuje Mirek bonbóny každý den až
do chvíle, kdy už v pytli žádný nezbyde. Jaká je pravděpodobnost, že posledním
snězeným bonbónem bude karamelka? (MKS 32–7–6)

Paradox 17. Deseti zvoleným ministrům byly náhodně rozdány ministerské re-
sorty, kterých je také deset. Každý ministr zvlášť zajde za králem, který posty roz-
dal, a musí si tipnout, který post má. Konverzace probíhá stylem:
Ministr: „Zemědělství.ÿ
Král: „Ne, zemědělství má Jánošík.ÿ
Ministr: „Tak administrativní záležitosti.ÿ
Král: „Ne, administrativní záležitosti má Jim Hacker.ÿ . . .
Ministři se mohou domlouvat pouze před zkouškou a jako celek uspějí jen tehdy,
když každý tipne svůj resort nejhůře na sedmý pokus. Rozhodněte, zda se dokáží
dohodnout tak, aby měli nadpoloviční šanci uspět. (Projev před ÚKMO 2014)

Paradox 18. Hrajeme jistou hazardní hru. Začínáme s 1000 Kč, vždy vsadíme
nějakou částku (nejvýše tolik, kolik právě máme), následně ji s pravděpodobností
1
2 vyhrajeme a v opačném případě prohrajeme. K takové hře je možné přistupovat
s rozličnými strategiemi:

(i) V každém kroku vsadíme tisíc korun.
(ii) V každém kroku vsadíme polovinu částky, kterou máme.
(iii) (Martingale) Po každé prohře vsadíme dvojnásobek minulé sázky. V opačném

případě, nebo pokud to není možné, vsadíme jednu korunu.

Při které z nabízených strategií máme nejvyšší šanci dosáhnout částky 3000 Kč?

Paradox 19. Jirka a Marek hrají svou verzi tenisu. Když podává Marek, má šanci
0,5, že vyhraje míček a když podává Jirka, vyhraje míček s pravděpodobností 0,6.
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Hraje se do 21 vítězných bodů (bez prodlužování). Marek, který je slabší, podává
jako první, navíc si může vybrat způsob, jak se budou střídat podání z následujících
možností:

(i) Podání se střídá pravidelně.
(ii) Podává vždy ten, kdo naposled vyhrál míček.
(iii) Podává vždy ten, kdo naposled prohrál míček.

Která volba je pro Marka nejvýhodnější?

Paradox 20. (Bertrandův) Pravděpodobnost, že náhodná tětiva dané kružnice je
delší než strana vepsaného rovnostranného trojúhelníku, je rovna 1

2 ,
1
3 a také 14 .

Návody

1. To, co rozhoduje, kterým vlakem pojedeme, je, který vlak přijede dřív.

3. Jedna polovina. Podívej se na symetrii sedadel prvního a posledního cestujícího.

4. Vyplatí se změnit volbu. Je pravděpodobnější, že auto je za některými z původně
nevybraných dveří, a to se otevřením dveří s kozou nezmění.

7. Nastat mohou obě možnosti.

8. Obou stejně. Chlapců se rodí přesně 50 procent, a to kdy přestanu rodit děti
totiž nemá vliv na to, jaké procento se rodí chlapců.

10. Není tomu tak, toto x je v každé možnosti jiné.

11. Existuje. Velká čísla je výhodné si nechávat, malá naopak vyměnit.

12. Není známa distribuce. Neexistuje distribuce, co by rovnoměrně náhodně vy-
brala náhodné reálné číslo.

14. Očekávaný zisk peněz je sice nekonečno, ale bohužel většina bankéřů má pouze
konečno peněz.

15. Všechny mají stejnou šanci být poslední ovcí. Všimni si, že aby zůstala ovce
poslední, musí nejdříve být snězena jedna její sousedka a poté i druhá.

17. Velký trik. Strategie existuje, zkus využít to, že permutací obsahujících cykly
dlouhé 8 a víc je málo.

18. Druhá strategie je horší než první a třetí. Důležité je to nepřepálit, jinak je to
jedno.

19. Všechny strategie jsou stejné. Kostky jsou vrženy, jen v závislosti na zvolené
strategii se občas neodehrají všechny zápasy (jejich výsledky jsou ale napsány ve
hvězdách). Vítěze ale stejně nemohou ovlivnit.

Literatura a zdroje

Děkuji Mirkovi, od něhož jsem převzal většinu paradoxů.

[1] Mirek Olšák, Pravděpodobnostní paradoxy, Uhelná Příbram, 2014.
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Odmocniny z jedničky
Petr Hladík

Abstrakt. V příspěvku se nejprve seznámíme s komplexními čísly jako takovými,
a pak se speciálně zaměříme na odmocniny z jedničky. Nejprve se pokusíme pořádně
pochopit, jak fungujou, a pak si ukážeme, jak to využít na příkladech.

Zavedení komplexních čísel

Definice. Mějme rovinu s osou reálných čísel. Tuto rovinu nazveme komplexní
rovina a body na ní budeme nazývat komplexní čísla. Bod 0 reálné osy nazveme po-
čátek a každé komplexní číslo je vektor vedoucí z počátku do bodu v rovině příslušné
tomuto komplexnímu číslu.

Definice. Součet komplexních čísel definujeme jako součet příslušných vektorů.
Dále definujeme součin komplexních čísel jako vektor, který má délku rovnu součinu
délek jednotlivých činitelů a svírá s kladnou reálnou polopřímkou úhel rovný součtu
orientovaných úhlů jednotlivých činitelů.

Pozorování. Operace na komplexních číslech splňují očekávané vlastnosti.

(1) Na reálné ose fungují jako běžné sčítání a násobení.
(2) Při sčítání/násobení nezáleží na pořadí sčítanců/činitelů.
(3) Při sčítání/násobení nezáleží na pořadí uzávorkování sčítanců/činitelů.
(4) Funguje roznásobování, tedy a · (b+ c) = a · b+ a · c.
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Imaginární jednotka

Pozorování. Existují právě 2 komplexní čísla, jejichž druhá mocnina je rovna −1.

Definice. Jednomu z čísel z předchozího pozorování (to, které leží nad reálnou
osou) budeme říkat imaginární jednotka a značit ji budeme i.

Pozorování. Každé komplexní číslo se dá jednoznačně napsat ve tvaru a+ bi, kde
a, b ∈ R.

Definice. Mějme komplexní číslo z = a. Jako komplexně sdružené číslo k z na-
zveme obraz z v osové souměrnosti podle reálné osy. Značíme ho z. Tedy pokud
z = a+ bi, tak z = a− bi.
Definice. Definujeme ωn jako komplexní číslo takové, že leží na jednotkové kružnici
a s kladnou reálnou osou svírá úhel 360

◦

n v kladném směru.

Důsledek. (Pythagorova věta) Pro pravoúhlý trojúhelník s odvěsnami délek a, b
a přeponou délky c platí a2 + b2 = c2.

Důsledek. (součtové vzorce) Pro úhly α, β platí následující vztahy mezi gonio-
metrickými funkcemi:

cos(α+ β) = cos(α) cos(β)− sin(α) sin(β),

sin(α+ β) = cos(α) sin(β) + sin(α) cos(β).

Důsledek. (Moivreova věta) Pro úhel α a přirozené číslo n platí rovnost

(cos(α) + i sin(α))n = cos(nα) + i sin(nα).

Cvičení. Najděte druhé odmocniny z komplexního čísla 3− 4i.

Příkládky

Úloha 1. Nalezněte všechna komplexní řešení polynomiální rovnice xn − 1 = 0.

Úloha 2. Sečtěte (
n

0

)
+

(
n

3

)
+

(
n

6

)
+ · · ·

Úloha 3. Sečtěte (
n

1

)
+

(
n

4

)
+

(
n

7

)
+ · · ·

Úloha 4. Sečtěte (
n

0

)
+

(
n

4

)
+

(
n

8

)
+ · · ·
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Odmocniny z jedničky

Definice. O komplexním čísle z řekneme, že je odmocninou z jedné, pokud je
kořenem polynomu zn − 1 pro nějaké přirozené n. Pokud toto n je nejmenší číslo
takový, že zn − 1 = 0, tak z je primitivní n-tou odmocninou z jedné.

Definice. Řádem komplexního čísla α nazveme nejmenší n takové že αn = 1.
Pokud takové číslo neexistuje, pak řekneme že řád je ∞.

Cvičení. Jaký je řád ω810?

Cvičení. Kolik komplexních čísel má řád n?

Úloha 5. Nechť m, n jsou přirozená čísla. Dokažte, že xn−1 dělí polynom xm−1,
právě když n | m.

Definice. Mějme množinu komplexních čísel G = {α1, . . . , αn}. Množinou genero-
vanou G nazveme co do inkluze nejmenší množinu X takovou, že G ⊂ X a zároveň
pro každá a, b ∈ X taky ab ∈ X. Značíme ji 〈G〉.

Úloha 6. Nechť G je konečná množina nějakých odmocnin z jedničky (tedy pro
každé α ∈ G existuje přirozené n takové, že αn = 1). Pak existuje přirozené n, že
〈G〉 = 〈ωn〉.

Úloha 7. Mějme přirozená čísla k, `, n, pak 〈ωkn, ω`n〉 = 〈ωgcd(k,`)n 〉.

Úloha 8. Nalezněte největšího společného dělitele mnohočlenů xm − 1 a xn − 1
v závislosti na přirozených číslech n a m.

Úloha 9. S využitím poznatků z posledního uvedeného příkladu ukažte, že 2n− 1
dělí 2m − 1, právě když n | m.

Definice. Pro libovolné přirozené n definujeme n-tý cyklotomický polynom jako

Φn(x) =
∏

1≤j≤n∧gcd(n,j)=1

(x− ωjn).

Úloha 10. Nahlédněte, že platí
∏
d|n Φd(x) = xn − 1.

Úloha 11. Dokažte, že pro libovolné přirozené n má polynom Φn(x) celočíselné
koeficienty.

Úloha 12. Nechť n je liché přirozené číslo. Spočtěte

1
1 + 1

+
1

1 + ω1n
+ · · ·+ 1

1 + ωn−1n

.

Úloha 13. Nechť m, n jsou přirozená čísla. Určete
∑n−1
j=0 ω

jm
n .

23



ODMOCNINY Z JEDNIČKY

Úloha 14. Přirozené číslo n ≥ 4 nazveme zajímavým, pokud pro něj existuje
komplexní číslo z takové, že |z| = 1 a zároveň 1 + z + z2 + zn−1 + zn = 0. Kolik
existuje zajímavých čísel menších než 2022? (Rumunská MO 2022)

Úloha 15. Mějme přirozená k, `, n a prostou funkci f na množině {1, . . . , n}
takovou, že f(x)− x ∈ {k,−`}. Dokažte, že k + ` | n. (Polská MO 2019)

Úloha 16. Nechť P , Q, R, S jsou polynomy takové, že pro každé x ∈ C platí

P (x5) + xQ(x5) + x2R(x5) = (x4 + x3 + x2 + x+ 1)S(x).

Dokažte, že P (1) = 0.

Úloha 17. Mějme přirozená čísla m,n ≥ 2 a a1, a2, . . . , an taková, že žádné z nich
není násobkem mn−1. Dokažte, že existují celá čísla b1, b2, . . . , bn taková, že ne
všechny jsou nulová, |bj | < m pro každé j a mn | a1b1 + a2b2 + · · ·+ anbn.

(IMO Shortlist 2002)

Návody

1. Označme nějaké řešení z, co musí splňovat jeho absolutní hodnota a úhel, který
svírá s reálnou osou?

2. Uvažuj ω3, jak vypadá (1 + ω3)n, (1 + ω23)
n a (1 + 1)n?

3. Stejně jako předchozí úloha, jen vhodně přenásob ω3.

4. Co takhle ω4?

6. Nejdříve najdi n takové, že prvky G jsou n–té odmocniny z jedničky. Pak vezmi
nejmenší k takové, že ωkn ∈ 〈G〉 a sporuj.

7. Ukaž obě inkluze.

11. Indukcí s tím, že absolutní člen je vždy ±1.

12. Popáruj sčítance. Vyjde n
2 .

13. Vyjde n pokud n | m, jinak 0.

14. Zkonjuguj danou rovnici.

15. Uvažuj (k + `)-té odmocniny z jedničky.

16. Co musíme dosadit, aby se pravá strana rovnala nule?

17. Uvažuj množinu všech mn součtů, pokud dovolujeme jen bj kladná. Ukaž, že
je to množina všech zbytků mod mn a uvažuj ωmn .

Literatura a zdroje

[1] Lenka Kopfová: Odmocniny z jedničky, Lipová-Lázně, 2022.
[2] Mirek Olšák: Komplexní čísla geometricky, Mentaurov, 2013.
[3] Jarda Hančl, Jakub „šnEkÿ Opršal: Komplexní čísla, seriál MKS, 2010/11.
[4] https://artofproblemsolving.com/community.
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Počítání dvěma způsoby
Petr Hladík

Abstrakt. Počítání dvěma způsoby je velmi silný nástroj, kterým lze dokazovat
(nejen) kombinatorické identity. V příspěvku si ukážeme jak nahlížet úlohy pomocí
tohoto způsobu.

Počítání dvěma způsoby umožňuje elegantní přístup ke spočtení nějakého slo-
žitého výrazu. Často se to týká součtu mnoha netriviálních hodnot nebo k určení
parametru jednoho odhadu. Funguje to tak, že si vytvoříme množinu, jejíž prvky
budeme moci spočítat dvěma (nebo více) různými způsoby. Počty odvozené z těchto
nahlédnutí však odpovídají počtu prvků stejné množiny, a tedy nahlédnuté počty se
rovnají, případně dostaneme odhad jedné hodnoty pomocí druhé.

Příklad. (motivační) Na večírku si někteří lidé vzájemně potřásli rukou. Ukažte,
že počet lidí, kteří si potřásli rukou lišekrát, je sudý.

Řešení. Představme si tento večírek jako graf. Vrcholy budou lidé a hrany mezi
vrcholy budou jednotlivá potřesení rukou. Chceme spočítat všechny dvojice (vrchol,
hrana) takové, že vrchol je jedním z koncových vrcholů dané hrany. První počítání
spočívá v tom, že se jedná o součet stupňů všech vrcholů. Dostaneme

∑
v∈V iv, kde

iv značí, kolikrát si potřásla rukou osoba v. Druhé počítání získáme počítáním hran
(potřesení rukou), čímž obdržíme výsledek 2 · |E|, kde E je množina hran. Nyní už
víme, že

∑
v∈V iv = 2 · |E|, tedy součet je sudý, a tedy i počet lichých hodnot iv je

sudý. Tedy počet lidí co si potřásli rukou lišekrát je sudý.

Příklad. (motivační) Spočítejte

1 ·
(
n

1

)
+ 2 ·

(
n

2

)
+ · · ·+ n ·

(
n

n

)
.

Řešení. Chceme se na tento součet podívat jako na reprezentaci nějaké situace.
Kombinační čísla v součtu naznačují, že nám půjde o všechny podmnožiny n-prvkové
množiny, kde každá i-prvková podmnožina přispívá do součtu právě i (počet svých
prvků). Můžeme si představit i-tý sčítanec jako počet způsobů, jak z krabičky s n
míčky vytáhnout i míčků a z vytažených míčků si navíc zvolit jeden speciální. Tedy
nám jde o počet dvojic (speciální míček, vytažené míčky). To můžeme nahlédnout
druhým způsobem tak, že nejprve vytáhneme z krabičky jeden míček, který bude
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speciální, a pak k němu vytáhneme libovolnou podmnožinu zbylých míčků z krabičky,
takže dostáváme celkem n · 2n−1 dvojic.

K počítání dvěma způsoby se často hodí různé kombinatorické identity, několik
z nich zde ukážeme a zkusíme odvodit.

Kombinatorické identity

Před tím, než začneme kombinační čísla používat, tak bychom si je mohli zadefinovat.

Definice. Označme
(
n
k

)
počet způsobů, jak z n prvkové množiny vybrat k prvků,

tedy (
n

k

)
=

n!
k!(n− k)!

.

Úloha 1. (úvodní) Dokažte
(
n
k

)
=
(
n

n−k
)
.

Úloha 2. Dokažte
(
n
k

)
+
(
n
k+1

)
=
(
n+1
k+1

)
.

Úloha 3. Dokažte
(
n+m+1

m

)
=
∑m
k=0

(
n+k
k

)
.

Úloha 4. Dokažte
∑n
k=0

(
n
k

)
= 2n.

Úloha 5. Dokažte
(
n
r

)
r = n

(
n−1
r−1
)
.

Úloha 6. Dokažte
(
n
r

)(
r
k

)
=
(
n
k

)(
n−k
r−k
)
.

Úloha 7. Dokažte
∑n
k=d

(
n
k

)(
k
d

)
= 2n−d

(
n
d

)
.

Úloha 8. (Vandermondeova identita) Dokažte
∑k
i=0

(
n
i

)(
m
k−i
)

=
(
m+n
k

)
.

Lehčí příklady

Úloha 9. Nechť P je množina všech permutací p = (p1, p2, . . . , pn) čísel 1 až n
takových, že žádné tři sousední prvky netvoří rostoucí posloupnost. Označme ai
průměrnou hodnotu na i-té pozici těchto permutací, tedy

ai =
1
|P|
∑
p∈P

pi.

Čemu se rovná součet všech ai?

Úloha 10. Na dětském táboře je 15 dětí. Každý den mají tři děti službu v kuchyni
a platí, že každá dvojice dětí má právě jednou společnou službu. Kolik dní trvá tábor?

Úloha 11. Při zápočtové písemce každý student vyřešil aspoň třetinu všech úloh
a navíc většina studentů vyřešila aspoň dvě třetiny úloh. Ukažte, že v písemce exis-
tuje úloha, kterou vyřešila většina studentů.
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Úloha 12. Pole mřížky 21× 21 jsou obarvena tak, že v každém řádku i sloupci se
vyskytuje nejvýše 5 různých barev. Ukažte, že se některá z barev vyskytuje ve třech
řádcích a zároveň i ve třech sloupcích.

Úloha 13. Označme Sn množinu všech permutací p = (p1, p2, . . . , pn) čísel 1 až n.
Pro permutaci p ∈ Sn označme

f(p) =
n∑
i=1

i · pi.

Ukažte, že
4
∑
p∈Sn

f(p) = (n2 + n)(n+ 1)!.

Úloha 14. V matematické olympiádě řešilo 45 účastníků šest příkladů, každý pří-
klad byl vyřešen právě 25 řešiteli. Ukažte, že můžeme vybrat dva účastníky, kteří
dohromady vyřešili vše.

Těžší příklady

Jelikož se dvojí počítání často využívá v důkazových metodách v teorii grafů, zave-
deme si nějakou teorii, abychom byli všichni na stejné lodi.

Definice. Graf G je uspořádaná dvojice množiny vrcholů V a množiny hran E,
kde každá hrana vede mezi dvěma vrcholy.

Definice. Cesta mezi vrcholy u a v v grafu je posloupnost vrcholů taková, že se
v ní žádný vrchol neopakuje a první vrchol je u a poslední v. Souvislý graf je takový,
kde mezi každou dvojicí vrcholů existuje cesta. Strom je minimální souvislý graf,
tedy mezi každými dvěma jeho vrcholy existuje právě jedna cesta. Ekvivalentně je
to souvislý graf, který má |V | − 1 hran. Kostra grafu je podgraf, který je stromem
na všech vrcholech.

Úloha 15. Ukažte, že

2n∑
i=1

i(2n+ 1− i) = 4
n∑
i=1

i2.

Definice. Rovinné nakreslení grafu je takové nakreslení, kde se žádné dvě hrany
nekříží mimo vrchol.

Úloha 16. Mějme rovinné nakreslení grafu G, ve kterém jsou všechny stěny troj-
úhelníky. Předpokládejme, že vrcholy G jsou obarveny třemi barvami.1 Ukažte, že
počet stěn, na jejichž vrcholech jsou použity všechny tři barvy, je sudý.

1Nemusí se nutně jednat o korektní obarvení, tzn. může existovat hrana s oběma koncovými
vrcholy stejné barvy.
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Úloha 17. Dokažte, že platí

13 + 23 + · · ·+ n3 = (1 + 2 + · · ·+ n)2 .

Úloha 18. Spočítejte

12
(
n

1

)
+ 22

(
n

2

)
+ · · ·+ n2

(
n

n

)
.

Úloha 19. V poslanecké sněmovně je 200 poslanců, kteří postupně hlasují o n
zákonech. Poslanec může být buď pro schválení zákona, nebo proti, nebo se může
zdržet hlasování. Je známo, že pro každá dvě hlasování existuje poslanec, který
v jednom hlasoval pro a v druhém proti. Označme si počet poslanců, kteří se zdrželi
hlasování o i-tém zákonu, jako zi. Dokažte, že

n∑
i=1

2zi ≤ 2200.

Úloha 20. V obdélníkové tabulce m × n jsou napsána nezáporná reálná čísla,
přičemž každý sloupec i každý řádek obsahuje alespoň jedno kladné číslo. Pokud se
navíc řádek a sloupec protínají v políčku, kde je kladné číslo, tak je jejich součet
stejný. Dokažte, že m = n.

Úloha 21. (LYM-nerovnost) Mějme n-prvkovou množinu A a množinu S pod-
množin A takový, že žádné množina z S není podmnožinou jiné množiny z S. Dále
označme ai počet i-prvkových množin v S. Pak platí

n∑
i=0

ai(
n
i

) ≤ 1.

Úloha 22. (Erdős–Ko–Radova věta) Nechť k a n jsou přirozená čísla taková, že
2k ≤ n. Dále nechť M je množina k-prvkových podmnožin množiny {1, 2, . . . , n}
taková, že pro všechny množiny C, D ∈M platí C∩D 6= ∅. Dokažte, že |M | ≤

(
n−1
k−1
)
.

Úloha 23. (malá Fermatova věta) Ukažte, že je-li p prvočíslo, pak

ap ≡ a (mod p).

Úloha 24. (Cayleyho formule) Určete počet koster úplného grafu na n vrcholech.

Úloha 25. Určete počet koster úplného grafu bez jedné hrany e.

Úloha 26. Ukažte, že každý graf sN vrcholy neobsahující žádné cykly délky přesně
4 má nanejvýš O(N3/2) hran.2

2Notace s O značí asymptotickou velikost. Zde konkrétně tedy má být hran nejvýše cN3/2, kde
c je nějaká konstanta nezávislá na N .
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Návody

1. Mějme tým s n fotbalisty a počítejme, na kolik způsoby jde vybrat k hrajících
fotbalistů. Buď vybereme k hrajících hráčů, nebo vybereme n− k nehrajících.

2. Vybíráme k + 1 fotbalistů z týmu s n + 1 fotbalisty. Prvního fotbalistu buď
vybereme, nebo vybíráme všechny hrající ze zbývajících fotbalistů.

3. Použijte podobnou ideu jako v předchozím příkladě, ale induktivně.

4. Vybíráte podmnožiny n-prvkové množiny. Každý prvek buďto vyberete, nebo
ne.

5. Jsou dva postupy, jak z n fotbalistů vybrat r hrajících hráčů a jednoho kapitána.

6. Jak vybrat z n fotbalistů r hrajících a k útočníků.

7. Jde o zobecnění motivačního příkladu. Nyní je ale fixovaná proměnná d. Můžeme
si to představit tak, že si z n lidí vybíráme k ≤ d kamarádů a z d z nich chceme
vybrat na fotbal.

8. Máte n děvčat a m hochů a chcete z nich vytvořit k-členný tým.

9. Zkuste počítat po hodnotách ne po pozicích.

10. Počítejte dvěma způsoby počet dvojic (množina dvou dětí, den). Nejprve fixujte
množinu dětí a poté den.

11. Počítejte dvěma způsoby dvojice (úloha, student), ale pozor na to, že dvě in-
formace nejsou záměnné.

13. Jako v předchozí úloze s permutacemi. Ale pozor, tentokrát s koeficientem
pozice.

14. Všimněte si, že existuje účastník, který vyřešil alespoň čtyři úlohy, a také
existuje účastník, který vyřešil zbylé dvě.

15. Nakreslete si trojúhelník z kostiček se základnou délky 2n, kde v i-tém patře
leží kostičky s číslem i. Kostičky pak postupně od kraje trojúhelníku odebírejte.

16. Spočítejte dvěma způsoby počet dvojic (trojúhelník, různobarevná hrana).

17. Nakreslete si čtvercovou mřížku o straně n a do políčka na pozici [i, j] napište
číslo i · j. Sečtěte všechna čísla po řádcích a po „elkáchÿ od rohu [1, 1].

18. Použijte podobnou myšlenku jako u motivační úlohy, zbylou sumu už spočítat
umíte.

19.(1) Kolik nejvýše hlasování mohlo proběhnout, pokud by každý hlasoval pro
nebo proti? Kolika způsoby lze doplnit ta hlasování, kde se někdo zdržel,
tak, aby každý hlasoval?

(2) Počítejte počet dvojic (zákon,možný výsledek bez nerozhodných hlasů).

20. Uvažte podtabulku tvořenou řádky a sloupci takovými, že součet čísel v každém
z nich je stejný. Jaké má tato podtabulka rozměry?
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21.(1) Pro každou množinu S ∈ S vytvořte všechny permutace n prvků takové, že
prvních |S| prvků bude z S. Těchto permutací bude nejvýše tolik jako všech
permutací n prvků.

(2) Počítejte dvojice (uspořádaná n-tice, S), kde S ∈ S a prvních |S| prvků n-tice
je z S.

22. Počítejte dvěma způsoby dvojice (množina z M, permutace) takové, žeM bude
pro tuto permutaci cyklický interval.

23. Spočítejte všechny řetězce délky p, kde každý znak je z a-prvkové abecedy
a nejsou v nich všechny znaky stejné. Tyto řetězce poté můžete rozdělit na skupinky
po p.

24. Spočtěte dvěma způsoby počet možností, jak vytvořit zakořeněný strom s n
hranami orientovanými od kořene. Zkuste spočítat počet možných vytvoření z běž-
ných stromů a také vytvářet strom po hranách.

25. Dvojím počítáním spočtěte dvojice (kostra, hrana).

26.(1) Počítejte dvěma způsoby počet „vidličekÿ, tedy trojic vrcholů a, b, c, kde b
je spojeno hranou s a i s c.

(2) Použijte CS nerovnost, abyste z čtverců incidencí dostali odhad na počet
hran.

Literatura a zdroje

[1] Filip Čermák: Počítání dvěma způsoby, Lysečiny, 2020.
[2] Tomáš Novotný: Počítání dvěma způsoby, Zásada, 2017.
[3] Martin Hora: Počítání dvěma způsoby, Hojsova stráž, 2016.
[4] Zuzka Safernová: Dvojí počítání, Staré Město, 2009.
[5] Martin Balko: Kombinatorika a grafy 1, přednáška a cvičení MFF, 2018/19.
[6] Štepán Šimsa: Počítání dvěma způsoby, materiály k MO.
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Chinese dumbass notation a SOS
David Hromádka

Abstrakt. Stalo se vám už někdy, že jste řešili nerovnost, nevědli jste co s ní, a tak
jste ji sáhodlouze roznásobovali, jen abyste zjistili, že vám to vůbec nepomohlo? Tak
my si dneska ukážeme, jak roznásobovat tak, aby se v tom člověk nějak vyznal, a jak
si s výsledným výrazem poradit.

Definice. Polynom tří proměnných x, y, z nazveme homogenní, pokud pro všechny
členy platí, že součet stupňů všech tří proměnných je konstantní v celém polynomu.

Zápis polynomů v CDN

V této přednášce se budeme zabývat zápisem homogenních polynomů ve třech klad-
ných proměnných. Aby byl celý výraz přehlednější, zapíšeme si jejich koeficienty
do trojúhelníka o d + 1 řádcích, kde d je stupeň polynomu. V každém řádku jsou
všechny členy s pevným stupněm proměnné x a tento stupeň se snižuje odshora dolů.
Obdobná vlastnost platí i pro ostatní proměnné – stačí si natočit trojúhelník jiným
vrcholem nahoru. Vše objasní následující příklady zápisu polynomů:

(
[x]

[y] [z]

)
,

 [x2]
[xy] [xz]

[y2] [yz] [z2]

 ,


[x3]

[x2y] [x2z]
[xy2] [xyz] [xz2]

[y3] [y2z] [yz2] [z3]

 ,


[x4]

[x3y] [x3z]
[x2y2] [x2yz] [x2z2]

[xy3] [xy2z] [xyz2] [xz3]
[y4] [y3z] [y2z2] [yz3] [z4]

 .

Sčítání dvou trojúhelníků, které mají stejnou velikost, funguje po složkách. Tečky
značí nuly.


·
· ·
· −1 ·

1 1 1 1

+

 3
· ·

2 2 2
−3 · · −3

 =

 3
· ·

2 1 2
−2 1 1 −2

 .

Abychom mohli trojúhelníky mezi sebou násobit, uvědomíme si nejdříve, jak se
násobí trojúhelníkem obsahujícím jen jeden nenulový člen. Celý trojúhelník zakoře-
níme na pozici tohoto členu a pronásobíme jeho velikostí:

31



CHINESE DUMBASS NOTATION A SOS

( ·
· 2

)
·

(
1

2 3
4 5 6

)
= 2 ·

·
(
· 1

)
2 3

4 5 6

=


·
· 2
· 4 6
· 8 10 12

 .

Na obecné dva trojúhelníky pak aplikujeme základní roznásobování:

( ·
· 2

3 · ·

)
·
(

1
3 2

)
= 2


·
· 1
· 3 2
· · · ·

+ 3


·
· ·

1 · ·
3 2 · ·

 =


·
· 2

3 6 4
9 6 · ·

 .

Cvičení. Zapište v trojúhelníkovém tvaru:

• x3 + y3 + z3,
• (x+ y + z)3,
• (x+ y + z)(x2 + y2 + z2),
• (x+ y + z)(xy + yz + zx),
• (x+ y)(y + z)(z + x),
•
∑
cyc(x+ y − z)2,

•
∑
cyc x(x+ y)(x+ z),

•
∑
cyc(2x+ y + z)2,

•
∑
cyc(3x+ y)3.

Nerovnosti v CDN

Poznámka. Většina následujících nerovností opravdu platí pouze pro nezáporná
x, y, z, na což je potřeba myslet.

Věta. (vážená AG nerovnost) Máme několik kladných čísel v trojúhelníku a v místě
jejich váženého průměru, jehož váhy jsou ona čísla, máme záporně jejich součet (viz
příklady). Pak hodnota polynomu, který tento trojúhelník představuje, je nezáporná.

(
1
· −2
· · 1

)
,


·
· ·
· · ·

2 −3 · 1

 ,

 1
· ·
· −3 ·

1 · · 1

 .

Věta. (sudé mocniny) Další šikovnou, triviálně platnou, nerovností je nerovnost
(x − y)2n ≥ 0. Pro n = 1 a n = 2 vypadá následovně: (1,−2, 1), (1,−4, 6,−4, 1).
První již máme pomocí AG dokázanou, oproti tomu ta druhá pomocí jednoduchého
sčítání AG dokázat nelze.
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Věta. (Muirheadova nerovnost) Máme dva symetrické1 šestiúhelníky. Jeden tvoří
jedničky, druhý mínus jedničky a oba mají stejné těžiště (viz první dva obrazce).
Přitom šestiúhelník z mínus jedniček je uvnitř konvexního obalu šestiúhelníka z jed-
niček. Šestiúhelník může zdegenerovat do trojúhelníka dvojek (třetí ukázka). Pak
hodnota polynomu, který tento trojúhelník představuje, je nezáporná.



·
· ·

1 · 1
· −1 −1 ·

1 −1 · −1 1
· · −1 −1 · ·
· · 1 · 1 · ·

 ,



·
· ·

1 −1 1
−1 · · −1
1 · · · 1
· −1 · · −1 ·
· · 1 −1 1 · ·


,

 2
−1 −1
−1 · −1
2 −1 −1 2

 .

Věta. (Schurova nerovnost) Máme tři stejně velké kosočtverce z jedniček a mí-
nus jedniček, které tvoří symetrický útvar jako na obrázku. Kosočtverce se mohou
překrývat, v překrytém místě se jejich hodnoty sečtou. Hodnota takto vytvořeného
polynomu je nezáporná.



1
−1 −1
· 1 ·
· · · ·
· · · · ·

−1 1 · · 1 −1
1 −1 · · · −1 1


,


1

−1 −1
· 1 ·

−1 1 1 −1
1 −1 · −1 1

 ,

 1
−1 −1
−1 3 −1
1 −1 −1 1

 ,



1
· ·

−1 · −1
· · · ·

−1 · 3 · −1
· · · · · ·

1 · −1 · −1 · 1


.


1
· ·

−1 · −1
−1 1 1 −1
· · 1 · ·

1 · −1 −1 · 1

 ,



·
· ·
· · ·

1 −1 −1 1
· −1 3 −1 ·
· · −1 −1 · ·
· · · 1 · · ·

 ,



·
· 1
· −1 −1
· · 1 ·

−1 1 · · ·
1 −1 · 1 −1 ·
· · · · −1 1 ·


Všechny nerovnosti budeme řešit tím způsobem, že se nejdříve zbavíme zlomků

vynásobením všech členů jejich společným jmenovatelem. Pracujeme s nerovností,
takže je potřeba si hlídat, jestli to, čím násobíme, je kladné nebo záporné. Pokud
nerovnost není homogenní, využijeme podmínku a tím ji homogenizujeme. Zapíšeme
vše pomocí CDN a roznásobíme. Následně převedeme do tvaru P ≥ 0 a od tohoto
polynomu P odčítáme známé nerovnosti, dokud se tím nezbavíme všech záporných
členů. Až se nám to povede, je úloha dokázána.

Příklad. (Nesbittova nerovnost) Pro x, y, z ≥ 0 dokažte:

x

y + z
+

y

z + x
+

z

x+ y
≥ 3

2
.

1Symetrií myslíme to, že pokud náš trojúhelník na sebe libovolně překlopíme nebo otočíme,
rozložení ani hodnota čísel se nezmění.
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Řešení. Roznásobíme celou nerovnost výrazem 2(y+ z)(z+ x)(x+ y), abychom se
zbavili zlomků, a dostáváme:

2
∑
cyc

x(x+ y)(x+ z) ≥ 3(x+ y)(y + z)(z + x).

Zapíšeme v CDN a roznásobíme:

2
∑
cyc

(
1

· ·

)(
1

1 ·

)(
1

· 1

)
≥ 3

(
1

1 ·

)( ·
1 1

)( 1

· 1

)
,

∑
cyc


2

2 2

· 2 ·
· · · ·

 ≥ 3


·

1 1

1 2 1

· 1 1 ·

 ,


2

2 2

2 6 2

2 2 2 2

 ≥


·
3 3

3 6 3

· 3 3 ·

 ,


2

−1 −1

−1 0 −1

2 −1 −1 2

 ≥ 0.

Dostali jsme tedy tvar, který potřebujeme. Zbývá najít, jak tuto nerovnost za-
psat jako součet známých nerovností. To uděláme postupným odečítáním známých
nerovností. Pokud se takto zbavíme všech záporných čísel, nerovnost jsme nutně
zapsali jako součet platných nerovností, jinými slovy platí. Můžeme rovnou říct, že
tato nerovnost je přímo speciálním případem Muirheadovy nerovnosti, ale ukážeme
si, jak ji dokázat pomocí AG. Využijeme následující AG k eliminaci jedné mínus
jedničky: 

·
· ·
· · ·

1
3 · −1 2

3

 .

Tento trojúhelník symetricky sečteme. Tím jsme se zbavili všech šesti mínus jedniček,
takže jsme zapsali nalezený polynom jako součet nezáporných polynomů, tedy i tento
polynom musí být nezáporný. �

Cvičení. Dokažte o následujících polynomech, že jsou nezáporné:

·
4 4

−1 2 −1
−6 −2 −2 −6
−1 −2 6 −2 −1
4 2 −2 −2 2 4
· 4 −1 −6 −1 4 ·


,

 3
· −4

−4 3 ·
3 · −4 3

 ,


1
· ·

−1 −1 −1
−1 2 2 −1
· −1 2 −1 ·

1 · −1 −1 · 1

 .
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Úlohy

Poznámka. Ve všech úlohách předpokládáme x, y, z ≥ 0. Zároveň budeme uvažo-
vat pouze taková x, y, z, že jsou všechny výrazy dobře definované.

Dokažte následující nerovnosti.

Úloha 1. (x+ y − z)(y + z − x)(z + x− y) ≤ xyz.

Úloha 2. x3

yz + y3

zx + z3

xy ≥ x+ y + z.

Úloha 3. xy
x+y + yz

y+z + zx
z+x ≤

3(xy+yz+zx)
2(x+y+z) .

Úloha 4. x2

y+z + y2

z+x + z2

y+x ≥
x+y+z
2 .

Úloha 5. (Česko-slovensko-polské střetnutí) x
y+2z + y

z+2x + z
x+2y ≥ 1.

Úloha 6. 8(x3 + y3 + z3)2 ≥ 9(x2 + yz)(y2 + zx)(z2 + xy).

Úloha 7.
∑
cyc

x2+y2

z ≥ 2(x+ y + z).

Úloha 8.
∑
cyc

x2−z2
y+z ≥ 0.

Úloha 9. (x+ 2y + z)(x+ y + z)2 ≥ 4(x+ y)(y + z)(z + x).

Úloha 10. xy + y
x + x

y ≥ x+ y + 1.

Úloha 11. yz
2x+y+z + zx

2y+z+x + xy
2z+x+y ≤

1
4 (x+ y + z).

Úloha 12. Pro x+ y + z = 1 dokažte x3 + y3 + z3 + 6xyz ≥ 1
4 .

Úloha 13. (IMO 1984/1) Pro x+y+z = 1 dokažte 0 ≤ xy+yz+zx−2xyz ≤ 7
27 .

Úloha 14. (Iran 1996) (xy + yz + zx)
(

1
(x+y)2 + 1

(y+z)2 + 1
(z+x)2

)
≥ 9
4 .

Úloha 15. Pro x+ y + z = 3 dokažte 1x + 1
y + 1

z − 1 ≥ 2
√

x2+y2+z2

3xyz .

Úloha 16. (IMO 2002/2) Pro xyz = 1 dokažte
(
x−1+ 1

y

)(
y−1+ 1

z

)(
z−1+ 1

x

)
≤ 1.

Úloha 17. (IMO 2005) Pro xyz = 1 dokažte
∑
cyc

x5−x2
x5+y2+z2 ≥ 0.

Úloha 18. (IMO 1995) Pro xyz = 1 dokažte
∑
cyc

1
x3(y+z) ≥

3
2 .

Úloha 19. Pro 1
x + 1

y + 1
z = x+ y + z dokažte

∑
cyc

1
(2x+y+z)2 ≤

3
16 .

Úloha 20. (SKMO Kvalifikace 2024/25)
∑
cyc

x3

(x+2y)(y+2z)2 ≥
1
9 .

Úloha 21.
∑
cyc

1
(x2−xy+y2)(y2−yz+z2) ≤

∑
cyc

1
x4 .

Úloha 22.
∑
cyc

xy
xy+y2+zx ≤ 1.
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Úloha 23. (IMO 1967) 1
x + 1

y + 1
z ≤

x8+y8+z8

x3y3z3 .

Úloha 24. Pro xyz = 1 dokažte x
1+x + y

(1+x)(1+y) + z
(1+x)(1+y)(1+z) ≥

7
8 .

Úloha 25. x6z3+y6x3+z6y3

x2y2z2 ≥ x3+y3+z3+3xyz
2 .

Úloha 26. Pro x+ y + z = 1 dokažte
√
xyz

(x+y)(y+z)(z+x) ≤
3
√
3
8 .

Úloha 27. Pro xyz = 1 dokažte
∑
cyc(x

4 + y3 + z) ≥
∑
cyc

x2+y2

z + 3.

Úloha 28.
(∑

cyc x
4
)(∑

cyc xy
3
)
≥
(∑

cyc x
3y
)(∑

cyc x
2y2
)

.

Úloha 29. Pro x2 + y2 + z2 = 1 dokažte x+ xz + y ≤ 2.

SOS

Příklad 30. (nerovnost Vasileho Cirtoajeho) Pro kladná a, b, c dokažte

(a2 + b2 + c2)2 ≥ 3(a3b+ b3c+ c3a).

Řešení. Tahle nerovnost je velmi zrádná. Na první pohled působí nevinně, má
stupeň 4, jen tři proměnné a je homogenní. Po zapsání do CDN vypadá následovně:

1
−3 ·
2 · 2
· · · −3

1 −3 2 · 1


Hned je vidět v čem je problém, záporné trojky jsou hrozně blízko kraje a v rozích
máme jen jedničky. To pomocí našich kanónů nepadne. A jak tedy vypadá řešení?
Polynom přepíšeme do tvaru

1
2

∑
cyc

(a2 − b2 − ab+ 2bc− ca)2,

čímž je nerovnost dokázána.

Jak na tohle někdo přišel? To vám nepovím, ale co si z příkladu odnést je, že
cyklické nerovnosti se často dají dokázat kouzelným přepsáním do součtu čtverců.
Zároveň to je způsob jak vymýšlet netriviální nerovnosti – vzít si nějaký náhodný
polynom, umocnit ho na druhou a cyklicky sečíst.

Úloha 31. Vymysli si vlastní úlohu, kterou nedokážeš vyřešit jednoduchým AG
a Schurem.
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Protože převod do obecných součtů čtverců je těžký, budeme si muset vystačit
s nějakým jednodušším tvarem. Ten tvar bude

S = Sa(b− c)2 + Sb(c− a)2 + Sc(a− b)2,

je znám pod názvem „Sum Of Squaresÿ a zkratkou SOS. Ještě budeme pro větší
přehlednost chtít, aby se výrazy Sa, Sb, Sc lišily pouze cyklickou záměnou proměn-
ných. Převod do takového tvaru není složitý, v trojúhelníčku stačí odčítat cyklicky
(1,−2, 1) a zapisovat si, kde jsme je odečetli.2

Příklad 32. Pro a, b, c > 0 dokažte nerovnost

2(a2 + b2 + c2)2 ≥ 3(a3(b+ c) + b3(c+ a) + c3(a+ b)).

Řešení. Nerovnost zapíšeme v CDN jako
2

−3 −3
4 · 4

−3 · · −3
2 −3 4 −3 2

 ,

což následně rozepíšeme jako součet cyklických (1,−2, 1):
1

−2 ·
1© · 1
· · · −2

1 −2 1 · 1

+


·

−1 −1
2 ·© 2

−1 · · −1
· −1 2 −1 ·

+


1
· −2

1 · 1©
−2 · · ·
1 · 1 −2 1

 .

Tím dostáváme rozklad na ∑
cyc

( ·
· ·

1 −1 1

)
(b− c)2,

ale všechny tyto členy jsou kladné, tedy jsme dokázali nerovnost.

Může se stát, že nám nevyjdou všechny členy přímo kladné. Pak ale stále nemu-
síme zoufat, může nám pomoci následující tvrzení.

Věta. Mějme S = Sa(b − c)2 + Sb(c − a)2 + Sc(a − b)2. Pokud je splněna nějaká
z následujících podmínek, tak je S ≥ 0.

(1) (Vyvážíme dvojnásobek) Sa, Sc, Sa + 2Sb a Sc + 2Sb jsou nezáporné.
(2) (Prostřední převáží) Sb, Sa + Sb a Sb + Sc jsou nezáporné, kde b je medián

a, b, c.
(3) (Dva proti jednomu) Sb, Sc a b2Sa + a2Sb jsou nezáporné, kde b je medián

a, b, c.
(4) (Cyklické součty) Sa + Sb + Sc a SaSb + SbSc + ScSa jsou nezáporné.

2Dokonce každý cyklický polynom se součtem koeficientů rovným 0 lze v SOS nějak zapsat.
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Důkaz. Pro důkazy se hodí postupně tato pozorování

(1) 2(a− b)2 + 2(b− c)2 − (a− c)2 = (a+ c− 2b)2 ≥ 0
(2) (b− c)(b− a) ≤ 0⇒ (a− c)2 ≥ (a− b)2 + (b− c)2

(3) a−c
b−c ≥

a
b ⇒ (a− c)2 ≥ a2

b2 (b− c)2

(4) BÚNO Sa+Sb ≥ 0. Diskriminant polynomu kde x = b−c a t = a−b. �

Příklad 33. (Schurova nerovnost) Zatím jsme si ukazovali Schurovu nerovnost jen
v jejím trojúhelníkovém tvaru, standardně ale vypadá takto

at(a− b)(a− c) + bt(b− a)(b− c) + ct(c− a)(c− b) ≥ 0

Řešení. Nejdříve si vyzkoušíme našeho známého Schura pro t = 1: 1
−1 −1
−1 3 −1
1 −1 −1 1

 .

Kvůli zachování symetrie si odečteme 12
∑
cyc(b+c)(b−c)2. Zbude nám šestiúhelníček,

který zapíšeme jako 1
2

∑
cyc−a(b− c)2, tedy celkově máme

Sa =
1
2

( −1
1 1

)
, Sb =

1
2

( 1
−1 1

)
, Sc =

1
2

( 1
1 −1

)
.

Protože je nerovnost symetrická, tak BÚNO a ≥ b ≥ c, pak je Sb ≥ 0, zároveň

Sb + Sc =
1
2

(
2
· ·

)
≥ 0, Sb + Sa =

1
2

( ·
· 2

)
≥ 0.

Tedy z tvrzení Prostřední převáží Schurova nerovnost pro t = 1 platí.
Pro obecný důkaz se podíváme se na člen (a− b)(a− c) a zapíšeme ho jako součet

nějakých výrazů (1,−2, 1). Dostaneme identitu

(a− b)(a− c) =
1
2

((a− c)2 + (a− b)2 − (b− c)2).

V CDN to vypadá následovně:(
1

−1 −1
· 1 ·

)
=

1
2

((
1

−2 ·
1 · ·

)
+

(
1
· −2
· · 1

)
+

( ·
· ·

−1 2 −1

))
.

Tedy výraz ze zadání můžeme přepsat jako

1
2

∑
cyc

(bt + ct − at)(b− c)2.
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Tedy znovu pomocí Prostřední převáží nerovnost platí.

Poznámka. Tvar SOS není jednoznačný, takže i když se nám povede polynom
nějak zapsat, ale ne dokázat nerovnost, můžeme se jej pokusit zapsat v jiném SOS
tvaru, který by se s úlohou zvládl lépe poprat.

Další úlohy

Ve všech následujících úlohách předpokládáme a, b, c ≥ 0.

Úloha 34. Dokažte, že

2(a6 + b6 + c6) + 16(a3b3 + b3c3 + c3a3) ≥ 9a4(b2 + c2) + 9b4(c2 + a2) + 9c4(a2 + b2).

Úloha 35. a5 + 2b5 + 8b3a2 ≥ 7b4a+ 2a3b(a+ b).

Úloha 36. Dokažte o následujících polynomech, že jsou nezáporné:
1

−1 −1
1 −4 1

1 3 3 1
−1 −4 3 −4 −1
1 −1 1 1 −1 1

 ,


·

1 1
1 −10 1

1 6 6 1
1 −10 6 −10 1

· 1 1 1 1 ·

 ,


1
· −1
· −8 2

2 6 6 ·
−1 −8 6 −8 ·
1 · · 2 −1 1

 .

Úloha 37. Jsou-li a, b, c délky stran trojúhelníka, dokažte

a3(b− c) + b3(c− a) + c3(a− b) + 2(a2b2 + b2c2 + c2a2) ≥ 2abc(a+ b+ c).

Úloha 38. a2+b2+c2

ab+bc+ca + 8abc
(a+b)(b+c)(c+a) ≥ 2.

Úloha 39.
∑
cyc

(a+b)2

c2+ab ≥ 6.

Úloha 40. Pro a+ b+ c = 1 dokažte 1
abc + 4

a2+b2+c2 ≥
13

ab+bc+ca .

Úloha 41. a2

b+c + b2

c+a + c2

a+b ≥
3
2 ·

a3+b3+c3

a2+b2+c2 .

Úloha 42. abc
2(a3+b3+c3) +

∑
cyc

a
b+c ≥

5
3 .

Úloha 43. 8a2b2c2 ≥ (a+ b)(b+ c)(c+ a)(a+ b− c)(b+ c− a)(c+ a− b).

Úloha 44. a3+b3+c3

3abc +
∑
cyc

a(b+c)
b2+c2 ≥ 4.

Úloha 45.
∑
cyc

2a2+bc
b2+c2 ≥

9
2 .

Úloha 46. Pro a+ b+ c = 1 dokažte 1a + 1
b + 1

c ≥
25

1+48abc .

Úloha 47. a(a− b)(a− 2b) + b(b− c)(b− 2c) + c(c− a)(c− 2a) ≥ 0.

Úloha 48. Pro a+ b+ c = 3 dokažte a−1
b+1 + b−1

c+1 + c−1
a+1 ≥ 0.
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Úloha 49. 

·
· ·

1 −2 1
−2 2 2 −2
1 2 −6 2 1
· −2 2 2 −2 ·
· · 1 −2 1 · ·


≥ 0.

Návody

10. Přidej třetí proměnnou a homogenizuj pomocí z = 1.

12. Nahraď podmínkou jedničku na pravé straně. Roznásob a nelekni se, že nesedí
součet koeficientů.

15. Nahraď 1 = 3
x+y+z , umocni na druhou a bij.

16. Homogenizuj pomocí (xyz)
1
3 = 1. Pokud se děsíš necelých exponentů, substi-

tuuj x3 = a, y3 = b, z3 = c.

18. Homogenizuj pomocí (xyz)
4
3 = 1. Substituuj třetí mocniny. Kdopak by se 24.

stupně bál.

19. Zbav se zlomků, stupně stran se liší o 2. Využij podmínku ve tvaru xy + yz +
zx = x2yz + xy2z + xyz2.

24. Homogenizuj pomocí (xyz)
1
3 = 1, substituuj třetí mocniny.

26. Umocni na druhou, pak homogenizuj.

29. Zařiď, aby na jedné straně byl stupeň dva a na druhé jedna, pak umocni.

34.
∑
cyc(b

4 + c4 + 2b3c+ 2c3b− 6b2c2)(b− c)2.
35. (a3 − 3ab2 + 2b3)(a− b)2.
37.

∑
cyc a(a+ c− b)(b− c)2.

38.
∑
cyc(b

2c+ c2b− abc)(b− c)2.
39.

∑
cyc(b

3c+ c3b+ 3b2c2 − ab2c− ac2b+ a2bc)(b− c)2.
40.

∑
cyc(a

3 + ab2 + ac2 − 2abc)(b− c)2.
41.

∑
cyc(b

4 + c4 + bc3 + cb3 + a3b+ a3c− 2b2ac− 2c2ab)(b− c)2.
42.

∑
cyc(3b

4 + 3c4 + 2b3c+ 2c3b− 3b2c2 + a3b+ a3c− b2ac− c2ab− a2bc)(b− c)2.
43.

∑
cyc(b

3c+ c3b+ 2b2c2 − a2bc)(b− c)2.
44.

∑
cyc(b

5a2+ c5a2+ a5b2+ a5c2+ 5ab4c2+ 5ac4b2− a2b3c2− a2c3b2− 2a4cb2−
2a4bc2 + 4b2c2a3)(b− c)2.
45.

∑
cyc(2b

4+ 4b3c+ b2c2+ 4bc3+ 2c4+ ab2c+ abc2+ a2bc− 2a3b− 2a3c)(b− c)2.
46.

∑
cyc a(3a− b− c)2(b− c)2.
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47. 1
3

∑
cyc(4b− c)(b− c)2. Případ a ≥ b ≥ c je lehký. Pro případ c ≥ b ≥ a rozeber

v neroznásobené formě podpřípad kdy b ≥ 2a. Pro kouzelné řešení polynom vynásob
polynomem

∑
cyc(b− c)2.

48. Něco odečti. Nepřipomíná to trochu předchozí příklad?

49. Součet každého řádku je 0, takže pokud úloha platí, tak je polynom dělitelný
(b − c)2. A co symetrie? Už víš, co za polynom šestého stupně se v zadání skrývá?
:-) Alternativně v SOS Sa = b2c2 − abc2 − acb2 + a2bc, spočti cyklické součty.
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Ramseyovky
Johana Kubátová

Abstrakt. Pravidelné struktury se v matematice skrývají všude. I když si vezmeme
náhodně vytvořené objekty, tak často stačí, aby byly dost velké, a máme zajištěnou
určitou pravidelnost. V teorii grafů se tímto zabývá převážně Ramseyova teorie, jejíž
nejdůležitější věty a příklady na ně si v této přednášce předvedeme.

Věta. (Dirichletův princip) Pro přirozená n, k mějme nk+ 1 míčků obarvených k
barvami. Pak musí existovat n+ 1 míčků stejné barvy.

Příklad. (Motivace) Mějme skupinu 6 lidí, kde se každí dva lidé navzájem buď
znají, nebo neznají. Ukažte, že existuje trojice, ve které se každí dva znají, nebo
každí dva neznají.

Věta. (Ramseyova věta – dvojbarevná) Pro každá přirozená n,m existuje N ta-
kové, že když obarvíme hrany úplného grafu na N vrcholech červenou a modrou,
tak vždy nalezneme červený úplný podgraf velikosti n nebo modrý úplný podgraf
velikosti m.

Definice. Nejmenší takovéto číslo N z předcházející věty se značí R(m,n).

Tvrzení. Platí nerovnost R(m,n) ≤ R(m− 1, n) +R(m,n− 1).

Poznámka. Podle motivační úlohy je R(3, 3) ≤ 6. Ukažte, že skutečně R(3, 3) = 6.

Věta. (Ramseyova věta – vícebarevná) Pro každá přirozená n1, . . . , nk existuje N
takové, že když obarvíme hrany úplného grafu na N vrcholech k barvami, tak pro
nějaké 1 ≤ i ≤ k nalezneme úplný podgraf na ni vrcholech, jehož hrany mají všechny
i-tou barvu.

Definice. Nejmenší takovéto číslo N z předcházející věty se značí R(n1, . . . , nk).

Tvrzení. Platí nerovnost R(n1, . . . , nk) ≤ R(n1, . . . , nk−2, R(nk−1, nk)).

Podobná tvrzení se dají zformulovat i pro nekonečné grafy. My se podíváme pouze
na nekonečno „stejně velkéÿ jako množina přirozených čísel. Výsledky jde zobecňovat
i dále, ale na to už jsou potřeba netriviální znalosti z teorie množin.

Věta. (Ramseyova věta – nekonečná) Mějme nekonečný graf, kde vrcholy tvoří
množina přirozených čísel a hrany všechny dvojice přirozených čísel. Když hrany
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tohoto grafu libovolně obarvíme konečným počtem barev, tak vždy bude existovat
nekonečný jednobarevný úplný podgraf.

Poznámka. Platnost nekonečné verze Ramseyovy věty implikuje platnost konečné
verze.

Klasická definice grafu nám pomáhá ukazovat vztahy mezi dvojicemi objektů. Co
kdybychom se ale rozhodli zkoumat vlastnosti trojic, čtveřic, atd.? K tomu bychom
museli klasickou definici grafu rozšířit na strukturu, které se říká hypergraf. Jed-
noduše řečeno, za hrany lze považovat nějakou p-tici vrcholů a ne jenom dvojice.
Formální definici si uvádět nebudeme, ale význam by měl být jasný z následující
věty.

Věta. (Ramseyova věta – pro p-tice) Pro každá přirozená n, p, k existuje přirozené
N takové, aby platilo následující. V úplném grafu na N vrcholech přiřadíme každé
p-tici vrcholů jednu z k barev, potom vždy existuje úplný podgraf o n vrcholech,
kde každá p-tice z daných n vrcholů má stejnou barvu.

Poznámka. Stejná věta platí i pro nekonečné grafy, ostatně z ní se často konečná
věta i vyvozuje.

Perličky na přirozených číslech

Věta. (Van der Waerdenova) Pro libovolná přirozená čísla d, k existuje přirozené
N takové, že když jakkoli obarvíme čísla 1, . . . , N k barvami, tak vždy najdeme
jednobarevnou aritmetickou posloupnost délky d.

Definice. Nejmenší takovéto číslo N z předcházející věty se značí W (d, k).

Tvrzení. W (3, 2) ≤ 5 · (2 · 25 + 1).

Tvrzení. W (3, 3) ≤ 7 · (2 · 37 + 1) ·
(

2 · 37·(2·37+1) + 1
)

.

Důkaz výše uvedených tvrzení využívá toho, že najdeme dostatek jednobarevných
(ale navzájem různě barevných) aritmetických posloupností délky 2 mířících do stej-
ného místa. Tím zajistíme, že číslo na tomto místě už musí doplňovat jednu z těchto
posloupností na jednobarevnou posloupnost délky 3. Stejnou myšlenkou ve spojení
s dvojnásobnou indukcí podle délky posloupnosti a počtu barev lze dokázat Van der
Waerdenovu větu i v obecném případě. Pro formální důkaz se hodí uvažovat jedno
zanoření indukce navíc. Konkrétně pokud bychom chtěli dokázat konečnost W (d, k),
tak dokazovat, že pro všechna přirozená i ≤ k existuje N takové, že libovolné obar-
vení množiny {1, . . . , N} obsahuje jednobarevnou aritmetickou posloupnost délky
d nebo i různě barevných jednobarevných aritmetických posloupností délky d − 1
mířících do stejného místa.

Věta. (Schurova věta) Pro každé obarvení přirozených čísel dvěma (resp. konečně
mnoha) barvami existují x, y, z ∈ N mající stejnou barvu a splňující x+ y = z.
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A jsou tu i nějaké příklady!

Úloha 1. (Erdős-Szekeres) V posloupnosti (n− 1)(m− 1) + 1 různých přirozených
čísel vždy existuje klesající podposloupnost délky n nebo rostoucí délky m.

Úloha 2. Každý bod v rovině je obarven buď modře, nebo červeně. Ukaž, že
existuje obdélník s vrcholy stejné barvy.

Úloha 3. Dokaž, že dokonce W (3, 2) = 9.

Úloha 4. Dokaž, že R(k, l) < R(k−1, l)+R(k, l−1), pokud jsou obě čísla R(k−1, l)
a R(k, l − 1) sudá.

Úloha 5. Dokaž, že existuje nekonečná množina přirozených čísel H taková, že
pro každá dvě různá čísla x, y ∈ H má číslo x+y sudý počet různých provočíselných
dělitelů. (Staré PraSe – myšmaš)

Úloha 6. Dokaž, že existuje množina H z předchozího příkladu, která obsahuje
dokonce po dvou nesoudělná čísla.

Úloha 7. (Happy ending problem) Dokaž, že pro každé n ∈ N existuje N ∈ N
takové, že každá množina N bodů v obecné poloze v rovině obsahuje n bodů v kon-
vexní poloze (tj. vrcholy konvexního n-úhelníka).

Úloha 8. V úplném grafu o 17 vrcholech je každá hrana obarvena modře, červeně,
nebo zeleně. Dokaž, že v grafu existuje jednobarevný trojúhelník. (IMO 1964)

Úloha 9. (Modulární Velká Fermatova věta) Ukaž, že pro každé přirozené n exis-
tuje p0 takové, že pro všechna prvočísla p > p0 má kongruence

xn + yn ≡ zn (mod p)

řešení pro nějaká x, y, z ∈ N, kde xyz 6≡ 0 (mod p).

Úloha 10. Existuje funkce f : N2 → N taková, že pro libovolnou nekonečnou
podmnožinu M přirozených čísel platí {f(a, b); a, b ∈M} = N?

Úloha 11. (těžší) Obarvěme čísla {1, . . . , 1978} libovolně šesti barvami. Dokaž, že
existují tři stejnobarevná čísla x, y, z splňující x+ y = z. (IMO 1978)
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Návody

1. Uvažujte dvojice čísel říkající, jaké nejdelší klesající a rostoucí podposloupnosti
na konkrétních číslech v posloupnosti končí.

2. Vezměte si mřížku bodů s celočíselnými souřadnicemi a podívejte se na svislé
trojice bodů.

5. Aplikuj Ramseyovky třeba na množinu čísel dávající po dělení 3 zbytek 1.

7. Nejdřív vyšetři případ pro n = 4.

8. Ke spočetní R(3, 3, 3) použij fakt, že R(3, 3) = 6.

9. Pomocí primitivního prvku pro p si všechna čísla v Z∗p napiš jako mocninu tohoto
prvku a následně je obarvi podle velikosti exponentu modulo n.

10. Neexistuje. Dokonce neexistuje, i kdybychom dvojice přirozených čísel „barviliÿ
pouze 4 barvami místo všech přirozených čísel.

Literatura a zdroje

Děkuji Martinovi Raškovi, od něhož jsem přednášku beze změny převzala.

[1] Martin Raška: Ramseyovky, Sklené, 2019.
[2] B. M. Landman, A. Robertson: Ramsey theory on the Integers, SML, 2014.
[3] Ben Green, Ramsey Theory and the IMO, https://www.jstor.org/stable/

3621841
[4] Jongmin Baek: Introduction to Infinite Ramsey Theory, 2017.
[5] Vašek Rozhoň: Úvod do Ramseyovy teorie, Lipová-lázně, 2016.
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Úhlení
Daniel Perout

Abstrakt. Příspěvek shrnuje základní metody řešení geometrických úloh. Uvádí
jejich orientované verze, které nám umožňují vyhnout se rozebírání různých konfigurací
bodů v řešení. Dále obsahuje úlohy vhodné k procvičení této techniky.

Věta. (Charakterizace tětivových čtyřúhelníků) Nechť ABCD je konvexní čtyř-
úhelník. Pak následující tvrzení jsou ekvivalentní:

(i) ABCD je tětivový (má kružnici opsanou),
(ii) |^ACB| = |^ADB| (shodnost obvodových úhlů),
(iii) |^ABC|+ |^ADC| = 180◦.

Věta. (O středovém a obvodovém úhlu) Nechť body A, B leží na kružnici se stře-
dem S a bod C na kratším oblouku AB. Pak

2|^ACB| = |^ASB|.

Příklad. (Lemma o dvou kružnicích) Jsou dány kružnice k, l, které se protínají
v bodech A, B. Na kružnici k zvolme bod X a sestrojme Y jako průsečík přímky
XB s kružnicí l. Ukažte, že nezávisle na volbě bodu X má trojúhelník AXY vždy
stejné vnitřní úhly.

Věta. (O úsekovém úhlu) Nechť ABC je trojúhelník vepsaný do kružnice k a p
přímka procházející bodem A. Na přímce p zvolme bod X tak, aby ležel v polorovině
opačné k

−−−→
ABC. Pak platí, že p je tečna kružnice k, právě když |^XAB| = |^ACB|.

Definice. Obloukový úhel |^AB| dvou bodů A, B ležících na kružnici k je roven
|^AXB| pro libovolný bod X ležící na opačném oblouku

−→
AB.

Příklad. Nechť je ABCD obdélník a P bod na jeho opsané kružnici různý od jeho
vrcholů. Nechť W , X, Y a Z jsou kolmé projekce bodu P na strany AB, BC, CD
a DA. Ukažte, že jeden z bodů W , X, Y a Z je ortocentrum trojúhelníka tvořeného
zbylými body.

Věta. (O obloukových úhlech) Nechť k je kružnice, A,B,C,D libovolné body na
ní a X průsečík AD a BC. Pokud

(i) X leží uvnitř kružnice k, pak |^AXB| = |^AB|+ |^CD|,
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(ii) X leží na polopřímce DA mimo kružnici k, pak |^AXB| = |^CD| − |^AB|,
(iii) X leží na polopřímce AD mimo kružnici k, pak |^AXB| = |^AB| − |^CD|.

Definice. Orientovaným úhlem ^(p, q) dvou přímek p, q (v tomto pořadí) nazveme
úhel, o který je třeba otočit p v kladném směru (proti směru hodinových ručiček),
aby otočená p byla rovnoběžná s q. Tento úhel je jednoznačný až na násobek 180◦.

Lemma. (Základní vlastnosti orientovaných úhlů) Pro přímky p a q platí

(i) ^(p, p) = 0,
(ii) ^(p, q) = −^(q, p),
(iii) ^(p, q) + ^(q, r) = ^(p, r),
(iv) ^(p, q) = ^(p, q) + k · 180◦, kde k je celé číslo,
(v) jsou-li A, B, S tři body neležící v přímce, pak A,B leží na jedné kružnici se

středem S, právě když ^(AS,AB) = ^(BA,BS).

Lemma. V trojúhelníku 4ABC platí

^(CA,AB) + ^(AB,BC) + ^(BC,CA) = 0.

Věta. (O obvodovém a středovém úhlu pro orientované úhly) Nechť body A, B,
C, D leží na jedné kružnici se středem S pak

(i) ^(AC,CB) = ^(AD,DB).
(ii) 2 · ^(AC,CB) = ^(AS, SB).

Věta. (O úsekovém úhlu pro orientované úhly) Přímka BX je tečna ke kružnici
opsané trojúhelníku ABC právě tehdy, když ^(AC,CB) = ^(AB,BX).

Věta. (O tětivových čtyřúhelnících) V rovině jsou dány čtyři různé body A, B, C,
D. Tyto body leží na jedné kružnici, právě když platí

^(AC,AD) = ^(CB,BD).

Příklad. (Folklor) Jsou dány kružnice k1, k2, k3, k4 tak, že ki a ki+1 a protínají
v bodech Ai a Bi (k5 = k1). Ukažte, že pokud je A1, A2, A3, A4 leží na jedné
kružnici, pak i B1, B2, B3, B4 leží na jedné kružnici.

Definice. Obloukový orientovaný úhel |^−→AB| oblouku
−→
AB kružnice k je roven

^(AX,BX) pro libovolný bod X ležící na oblouku
−→
BA.

Věta. (O orientovaných obloukových úhlech) Nechť ABCD je tětivový čtyřúhelník
a X průsečík přímek AD a BC. Pak ^(AX,XB) = |^−→AB|+ |^−→DC|.

Úloha 1. Přímky p, q se protínají v bodě S. Dále jsou dány body A, B takové, že
^(p, SA) = ^(SB, q). Paty kolmic z bodů A, B na přímku p označme postupně Ap,
Bp a obdobně paty kolmic na přímku q jako Aq, Bq. Dokažte, že body Ap, Aq, Bp,
Bq leží na jedné kružnici.
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Úloha 2. (Miquelova věta) Je dán trojúhelník ABC. Na přímkách BC, CA, AB
leží postupně body X, Y , Z. Dokažte, že kružnice opsané trojúhelníkům AY Z, XBZ
a XY C prochází jedním bodem.

Úloha 3. (Lemma o spirální podobnosti) Kružnice k1 a k2 se protínají v bodech
X a Y . Přímka procházející X protíná k1 a k2 podruhé v A a B. Druhá přímka
procházející X protíná k1 a k2 podruhé v C a D. Ukažte, že jsou si trojúhelníky
AY C, BYD podobné.

Úloha 4. Je dán rovnoramenný trojúhelník SAC se základnou AC. Na přímkách
SA, SC leží postupně body X, Z takové, že přímka XZ je rovnoběžná s přímkou
AC. Buď O střed kružnice opsané trojúhelníku AZS. Ukažte, že přímky XC a SO
jsou na sebe kolmé.

Úloha 5. (Švrčkův bod) V trojúhelníku ABC označme Š druhý průsečík osy vnitř-
ního úhlu u vrcholu A s kružnicí opsanou ABC. Dále označme Š′ druhý průsečík
osy vnějšího úhlu u vrcholu A s kružnicí opsanou. Nakonec označme středy kružnic
připsaných ke stranám BC, CA, AB postupně Ia, Ib, Ic a střed kružnice vepsané I.
Dokažte

(i) |ŠB| = |ŠC| = |ŠI| = |ŠIa|,
(ii) |Š′B| = |Š′C| = |Š′Ic| = |Š′Ib|.

Úloha 6. Buď H průsečík výšek trojúhelníku ABC a H ′ obraz H v osové souměr-
nosti podle přímky AB. Dokažte, že H ′ leží na kružnici opsané ABC.

Úloha 7. Skrz průsečík výšek H trojúhelníku ABC vedeme přímku p. Označme
pa, pb osové obrazy přímky p podle přímek BC, CA. Dokažte, že se přímky pa, pb
protínají na kružnici opsané.

Úloha 8. (Simsonova přímka) Buď P bod na kružnici opsané trojúhelníka ABC.
Dokažte, že paty kolmic z P na strany trojúhelníka (3 body) leží v jedné přímce.

Přímka z předchozí úlohy se nazývá Simsonova přímka trojúhelníku ABC vzhle-
dem k bodu P .

Úloha 9. Jsou dány body A, B, C, P na jedné kružnici. Kružnice k se dotýká
přímky PA v bodě A a prochází bodem B. Druhý průsečík této kružnice s přímkou
AC označme X. Dokažte, že přímka BX je kolmá na Simsonovu přímku trojúhelníku
ABC vzhledem k bodu P .

Úloha 10. Je dán ostroúhlý trojúhelník ABC. Nechť jsou D, E, F paty výšek
z vrcholů A, B, C. Jeden z průsečíků EF s kružnicí opsanou trojúhelníku ABC
označme P . Průsečík přímek BP a DF označme Q. Ukažte, že AP = AQ.

(IMO Shortlist 2010)

Úloha 11. Na stranách trojúhelníka ABC leží postupně body P , Q, R. Nechť kA,
kB a kC jsou kružnice opsané trojúhelníkům AQR, BRP , CPQ. Jsou-li X, Y a Z
druhé průsečíky AP s kA, kB a kC , pak ukažte, že Y X

XZ = BP
PC . (USAMO 2013)
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Úloha 12. NechťMN je přímka rovnoběžná se stranouBC trojúhelníku ABC tak,
že M ∈ AB a N ∈ AC. Přímky BN a CM se protínají v P . Kružnice opsané trojú-
helníkům BMP a CNP se podruhé protínají v Q. Ukažte, že |^BAQ| = |^CAP |.

(Balkán 2009)

Úloha 13. Kružnice k1 a k2 se protínají v bodech P a Q. Nechť AC a BD jsou
takové tětivy kružnic k1 a k2, že přímky AB a CD se protínají v P . Přímky BD
a AC se protínají v X. Y je bod na k1 takový, že PY || BD. Z je bod na k2 takový,
že PZ || AC. Ukažte, že body Q, X, Y , Z leží na jedné přímce. (USA TST 2007)

Úloha 14. Je dán trojúhelník ABC s kružnicí opsanou k. Nechť l je libovolná
přímka v rovině a lA, lB , lC obrazy l podle úseček BC, CA, AB. Nechť A′B′C ′ je
trojúhelník určený přímkami lA, lB , lC .

(i) Ukažte, že střed kružnice vepsané trojúhelníku A′B′C ′ leží na k.
(Irán 1995)

(ii) Předpokládejme, že l je tečna k. Ukažte, že kružnice opsaná A′B′C ′ se dotýká
kružnice k. (IMO 2011/6)
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Návody

1. Najdi tětivové čtyřúhelníky.

2. Najdi obvodové úhly a využij součet úhlů v trojúhelníku.

3. Využij velikost vedlejšího úhlu v tětivovým čtyřúhelníku.

4. Použij středové a obvodové úhly.

5. (i) Osy úhlů jsou na sebe kolmé.
(ii) Využij obvodové úhly.

6. Vyúhli.

7. Použij obloukové úhly.

8. Využij velikost vedlejších úhlů v tětivových čtyřúhelnících.

9. Použij větu o úsekových úhlech.

10. Ukaž, že APFQ je tětivový čtyřúhelník.

11. Použij lemma o spirální podobnosti.

12. Najdi tětivové čtyřúhelníky a použij spirální podobnost.

13. Ukaž, že XQAC je tětivový čtyřúhelník.

Literatura a zdroje

Příspěvek je pouze s drobnými úpravami převzán od Veroniky Hladíkové.

[1] Veronika Hladíková: Úhlení, Zásada, 2017.
[2] Martin Tancer: Orientované úhly, Prudka, 2002.
[3] Mirek Olšák: Orientované úhlení, Domašov, 2012.
[4] Michal ’Kenny’ Rolínek: Angle chasing, Dobrá voda, 2010.
[5] Titu Andreescu a Razvan Gelca: Mathematical Olympiad Challenges, Bir-

khäuser, 2011.
[6] Evan Chan: http://web.evanchen.cc/handouts/Directed-Angles/
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Zdeněk Pezlar

Abstrakt. Vezmi si tři osy úhlů trojúhelníka, protni je a voila! Tento bod jistě znáš,
to je super. Na této přednášce ho proto poznáš ještě o tolik blíže, no neber to!

Tvrzení. Osy vnitřních úhlů trojúhelníka ABC se protínají v jednom bodě. Po-
dobně se osy vnějších úhlů při dvou vrcholech a osa vnitřního úhlu třetího protínají
v jednom bodě.

Průsečík os vnitřních úhlů budeme značit I. Průsečík osy vnitřního úhlů BAC
a os vnějších úhlů ABC a ACB budeme značit IA. Podobně definujeme IB a IC .

Tvrzení. Bod I je střed kružnice vepsané trojúhelníku ABC a IA je střed kružnice
připsané straně BC.

Úmluva. Domluvme se, že kružnici opsanou trojúhelníku XY Z budeme značit
(XY Z). V této přednášce budou body D, E, F značit po řadě body dotyku kružnice
vepsané se stranami BC, AC a AB.

Švrci a připsiště

Střed oblouku B̂C neobsahujícího A kružnice (ABC) označme SA a nazvěme ho
A-Švrkem, střed druhého oblouku označme NA a nazvěme ho A-Antišvrkem.

Tvrzení. (Souhrn vlastností Švrka) Body B, C, I a IA leží na kružnici s průměrem
IIA a středem SA. Body B, C, IB a IC leží na kružnici s průměrem IBIC a středem
NA.

Tvrzení. (Dualita) Body A, B, C jsou paty výšek v trojúhelníku IAIBIC a or-
tocentrum tohoto trojúhelníka je I. Kružnice (ABC) je Feuerbachova kružnice1

trojúhelníku IAIBIC .

Tato věta je extrémně důležitá, když se bavíme o kružnicích připsaných. Občas
na tebe úloha hodí kružnice připsané, když analogické tvrzení o kružnici vepsané by
bylo jednodušší. Občas je úloha trochu bídák, no.

1Kružnice procházející středy stran a patami výšek.
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Úloha 1. (Shooting lemma) V trojúhelníku ABC uvažme body X, Y na úsečce
BC a druhé průsečíky přímek SAX a SAY s kružnicí opsanou označme Z, T . Ukažte,
že X, Y , Z, T leží na kružnici.

Úloha 2. Ukažte, že platí |AI| · |AIA| = |AB| · |AC|.

Úloha 3. V trojúhelníku ABC se středem kružnice opsané O uvažme bod K na
kružnici vepsané takový, že KD je průměr kružnice vepsané. Dokažte, že se přímky
KNA, DSA a OI protínají v jednom bodě.

Úloha 4. V trojúhelníku ABC označme M střed strany BC. Ukažte, že přímka
AI se dotýká kružnice (MINA).

Úloha 5. Je daná kružnice Ω a její tětiva AB. Do jednoho oblouku ÂB kružnice
Ω je vepsaná kružnice, která se dotýká Ω v bodě K a AB v bodě L. Ukažte, že KL
je osa úhlu AKB.

Úloha 6. (Bevan point) Označme V obraz I ve středové souměrnosti podle středu
kružnice opsané. Ukažte, že V je střed kružnice opsané trojúheleníku IAIBIC .

Poznámka. Ze stejnolehlosti z I plyne, že kružnice (IAIBIC) je dvakrát větší než
(ABC).

Úloha 7. Je dán trojúhelník ABC s |^BAC| = 90◦. Označme M a N středy
úseček AB a BI. Dokažte, že přímka CI je tečnou kružnice opsané trojúhelníku
BMN . (MO-70-III-2)

V přednášce na překlápění tečen se ukázalo, že dotyky vepsané a připsané kružnice
strany BC jsou symetrické podle středu této strany. To se využije v následující úloze,
mějme to pak na mysli v příští sekci.

Úloha 8. Nechť ABCD je rovnoramenný lichoběžník s AB ‖ CD. Vepsaná kruž-
nice trojúhelníku BCD se dotýká úsečky CD v bodě E. Bod F leží na ose ^DAC
tak, že EF ⊥ CD. Nechť opsaná kružnice trojúhelníku ACF protíná přímku CD
v bodech C a G. Dokažte, že trojúhelník AFG je rovnoramenný.

(USAMO 1999/6)

Úloha 9. V různostranném trojúhelníku ABC označme K jeden průsečík osy úhlu
BAC s kružnicí nad průměrem BC a K ′ jeho protilehlý bod na této kružnici. Ukažte,
že K, K ′, SA a NA leží na kružnici.

Úloha 10. V úloze výše označme druhý průsečík osy ^BAC s danou kružnicí L
a analogicky definujme L′. Ukažte, že kružnice (K ′L′NA) půlí úsečku BC.

(MO-71-III-3)

Stejnolehlosti na kružnici vepsané

Pro tuto sekci označme X bod dotyku kružnice připsané straně BC s touto stranou.
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Lemma 11. (Diameter of incircle lemma) Ukažte, že přímka AX prochází bodem
přímo naproti D na kružnici vepsané. Podobně přímka AD prochází bodem naproti
X na kružnici připsané.

Úloha 12. Označme M střed strany BC. Ukažte, že přímka MI půlí úsečku AD.

Úloha 13. V trojúhelníku ABC s ortocentrem H označme K, L, M po řadě paty
výšek z bodů A, B, C. Paty kolmic z bodů A a H na přímku LM označme po řadě
P a Q. Konečně, přímky KP a HQ se protnou v bodě R. Určete poměr |HQ||HR| .

(USA TST 2011/1)

Úloha 14. Ukažte, že AX ‖ IM a AD ‖MIA.

Lemma 15. (Midpoint of altitudes lemma) V trojúhelníku ABC dokažte, že přím-
ky XI a IAD obě půlí výšku z A.

Úloha 16. V trojúhelníku ABC označme Y obraz I podle přímky BC a P patu
výšky z A. Dokažte, že P , Y a IA leží na přímce.

Lemma 17. V trojúhelníku ABC označme M střed BC. Ukažte, že přímky AM ,
EF a DI prochází jedním bodem.

Úloha 18. V trojúhelníku ABC označme M střed BC. Kolmice na přímku AM
vedená bodem I protíná přímku EF v bodě L. Ukažte, že AL ‖ BC.

Úloha 19. V různostranném trojúhelníku ABC se středem kružnice opsané O
označme středy výšek z A, B, C po řadě K, L, M . Ukažte, že přímky KD, LE, MF
a OI prochází jedním bodem. (Vietnam TST 2003/2)

Úloha 20. V trojúhelníku ABC uvažme N druhý průsečík přímky DIA s kružnicí
vepsanou. Ukažte, že kružnice (BNC) půlí úsečku DIA. (vesměs CAPS 2021/2)

Úloha 21. V trojúhelníku ABC uvažmeK střed výšky z A. AťN je druhý průsečík
DK s kružnicí vepsanou. Ukažte, že kružnice (BNC) se dotýká kružnice vepsané.

(Shortlist 2002/G7)

Úloha 22. (těžší) V trojúhelníku ABC uvažme body P a Q různé od D na přímce
BC tak, že |BP | = |BD| a |CQ| = |CD|. Ukažte, že jeden z průsečíků kružnic (CEP )
a (BFQ) leží na kružnici vepsané. (MEMO 2025/I3)

Iran lemma

Lemma 23.2 V trojúhelníku ABC dokažte, že se přímka EF , osa úhlu ABC
a střední příčka příslušící bodu C protínají v jednom bodě. Navíc tento bod leží
na Thaletově kružnici nad BC.

Nejlepší pohled na toto tvrzení je „souběh osy úhlu jednoho vrcholu, střední
příčky druhého a přímky spojující dotyky kružnice vepsané třetíhoÿ. Když se tak
v úloze objeví dva, automaticky máme třetí.

2Též se mu někdy říká „Unlikely concurrenceÿ, protože, lidově řečeno, wtf.
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Úloha 24. V trojúhelníku ABC označme M střed strany BC, P patu C na AB
a K bod na ose úhlu ABC takový, že KM ‖ AB. Ukažte, že |KP | = |KC|.

Úloha 25. V trojúhelníku ABC osy úhlů ABC a ACB protnou přímku EF po
řadě v bodech X a Y . Ukažte, že I je střed kružnice vepsané trojúhelníku DXY .

Úloha 26. V trojúhelníku ABC označme M střed úsečky BC. Označme P , Q
průsečíky osy úhlu BAC s kružnicí ω se středem M procházející bodem D. Ukažte,
že |^PMQ|+ |^BAC| = 180◦. (Slovenské výběrko 2016/16)

Úloha 27. V úloze výše ukažte, že průsečík tečen ke kružnici ω v bodech P a Q
leží na výšce z A.

Úloha 28. Předpokládejme, že v trojúhelníku ABC existuje bod X na přímce EF
tak, že

|^XBC| = |^XCB| = 45◦.

Ukažte, že přímka SAD prochází buď E, nebo F . (Balkán 2023/1)

Úloha 29. Na kružnici vepsané nerovnorameného trojúhelníka ABC leží bod Q
tak, že AQ ⊥ QD. Ukažte, že přímka AQ prochází bodem dotyku kružnice připsané
trojúhelníku ABC ke straně BC.

Úloha 30. V úlože výše označme M střed strany BC a uvažme navíc bod P uvnitř
trojúhelníka ABC takový, že |MD| = |MP | a |^PAB| = |^PAC|. Dokažte, že platí
buď |^PQE| = 90◦ nebo |^PQF | = 90◦.

(USA TST 2015/1)

Úloha 31. (aneb, proč se to jmenuje Iran lemma) V trojúhelníku ABC označme
H ortocentrum trojúhelníku BIC. Dále označme P patu výšky z D na EF a K
střed úsečky DP . Ukažte, že KH půlí úsečku EF . (Iran TST 2009/9)

Návod. Najdi trojúhelník, jehož připsiště je H tak, že K je pořád střed výšky.

Sharky–Devil a big picture

Druhý průsečík kružnice (AEF ) s kružnicí (ABC) označme pro tuto sekci jako S.
Tomuto bodu říkáme A-Sharky–Devil. Hned z definice3 si všimněme, že S je střed
spirální podobnosti přenášející FE na BC, tedy, že SFE ∼ SBC. Označme si navíc
dále patu komice z D na EF jako P . Tento bod už jsme viděli v předchozí úloze,
trochu více nyní prozkoumáme jeho vlastnosti.

Lemma 32. V trojúhelníku ABC označme A′ bod přímo naproti A na kružnici
opsané. Pak S, P , I a A′ leží na jedné přímce.

Úloha 33. Ukažte, že se přímky AS, BC a kolmice na AI v I protínají v jednom
bodě.

3Pokud se chceš dozvědet víc o spirálce, podívej se na tenhle příspěvek https://prase.cz/library/
SpiralniPodobnostAKZ/SpiralniPodobnostAKZ.pdf
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Úloha 34. V různostranném trojúheleníku ABC osa úhlu BAC protne stranu BC
v bodě K, přímka AS protne stranu BC v bodě T . Bodem K veďme rovnoběžku
s přímkou SI a její průsečík s TI označme J . Dokažte, že AJ ⊥ BC.

(Girls in Mathematics Tournament 2024)

Úloha 35. (Bevan point znovu) V různostranném trojúhelníku ABC označme V
obraz I ve středové souměrnosti podle středu kružnice opsané. Dokažte, že SA ⊥ AV .

Úloha 36. (lehce počítací) Ukažte, že zmíněná spirální podobnost zobrazí P na
D. Odvoďte z toho, že SD je osa úhlu BSC, tedy přímka SD prochází bodem SA.

Úloha 37. V trojúhelníku ABC uvažme průsečík K přímek NAS a BC. Ukažte,
že K leží na přímce EF .

Úloha 38. V trojúhelníku ABC označme X, Y po řadě průsečíky přímky EF
s osami úhlů ABC a BCA. Ukažte, že X, Y , S a NA leží na kružnici.

Úloha 39. V různostranném trojúhelníku ABC ukažte, že přímka DI je tečna ke
kružnici (DPS). (Čína jihovýchod 2023/5)

A jako velké finále si vyřešíme další úlohu z amerického výběrka. Hodně zábavy,
nezlomte pravítka!

Úloha 40. V různostranném trojúhelníku ABC označme G druhý průsečík přímky
AP s (ABC). Ukažte, že S, P , D a G leží na kružnici.

Úloha 41. V úloze výše dokažte, že NA, D a G leží na přímce.

Úloha 42. V úloze výše označme M střed strany BC. Ukažte, že D je střed
kružnice vepsané trojúhelníka GSM . (USA TST 2021/2)

Návody

1. Vyúhli to.

2. Najdi podobnost.

3. Přímka OI je přímka spojující středy nějakých kružnic, že?

4. Mocnost.

5. Stejnolehlost.

6. Zapoj Antišvrka a ukaž, že NAA ⊥ NAV .

7. Na co navádí středy? Odpověď je buď střed kružnice opsané a nebo stejnolehlost,
tak si vyber :D

8. Zkus tam najít pár známých bodů.

9. Jaký bod by to fakt chtělo dokreslit?

10. Vyúhli švrka pomocí předchozí úlohy.

11. Stejnolehlost v A.

12. Najděte vhodnou stejnolehlost pomocí lemmatu 11.
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13. Ortocentrum? To zní jako dualita. Využij lemmatu 11.

14. Stejnolehlost nebo střední příčky.

16. Najdi střední příčku pomocí Midpoint of altitudes lemmatu.

18. Najdi ortocentrum v obrázku. Využij lemma 17.

19. Zase a znova stejnolehlost. Mezi DEF a kterým trojúhelníkem?

20. Jak uchopit střed? Co pomocí mocnosti?

21. Využij předchozí úlohu. Pro tečnost najdi stejnolehlost z kružnice vepsané na
kružnici (BNC). K tomu chceš říct, že střed DIA je bod nejníž na (BNC). Pomocí
délek ukaž, že je to Švrk.

22. Dokresli připsiště a využij předchozí úlohu. Mocnost a úhlení.

24. Najdi Švrka.

25. Najdi dvě Thaletovky a úhli.

26. Iran lemma dává pár rovnoběžností.

27. Dokresli si pár kružnic z Iran lemmatu a ukaž, že se dotýkají ω. Tečny jsou
taky chordály.

28. Z Iran lemmatu plyne, že ABC je pravoúhlý.

29. Jaký je druhý průsečík AQ s kružnicí vepsanou?

30. Kde ještě leží P? Pak už to jen vyúhli.

31. Něco půlí výšku, co nám to asi připomíná?

33. Jaká chordála může být kolmice na AI v I?

34. Využij předchozí úlohu. Co je J?

35. Najdi rovnoběžnost. Jak využít, že O je střed V I?

36. Spočítej |FP |/|EP | pomocí trošky goniometrie a všimni si úhlů v trojúhelníku
BIC.

37. Najdi kružnici, co prochází středem EF a vyúhli to.

38. Vzpomeň si na Iran lemma a na předchozí úlohu. Mocni.

39. Co starý dobrý shooting lemma?

40. Dokresli bod naproti A.

41. Pomocí nalezené kružnice ukaž |^SGD| = |^SGNA|.
42. Dokresli Švrka a najdi pár kolmic.

Literatura a zdroje

[1] i3435: Muricaaaaaaa, https: / / artofproblemsolving . com / community /
c6h2456133p20459825.

[2] Evan Chen: Euclidean Geometry in Mathematical Olympiads.
[3] Yufei Zhao: Lemmas in Euclidean Geometry, https://yufeizhao .com/

olympiad/geolemmas.pdf
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Úvod do teorie čísel
Lenka Poljaková

Abstrakt. Teorie čísel je jedním ze čtyř pilířů matematické olympiády. Každý zku-
šený olympionik má svou základní sadu nástrojů, ze kterých své řešení pak lepí. V
tomto příspěvku si proto na spoustě úložek představíme nejužitečnější zbraně, co při
řešení „N-kaÿ používáme.

Úmluva. Všechna m,n považujeme za přirozená, všechna k, `, a, b za celá.

Dělitelnost a prvočísla

Definice. O celých a, b říkáme, že a dělí b, jestliže existuje k takové, že b = k · a.
Značíme a | b.

Definice. Přirozené číslo p nazveme prvočíslem, pokud má právě dva přirozené
dělitele.

Úloha 1. Dokažte, že existuje nekonečně mnoho prvočísel.

Úloha 2. Dokažte, že existuje nekonečně mnoho prvočísel tvaru 4k + 3.

Úloha 3. Nahlédněte, že součin libovolných pěti po sobě jdoucích celých čísel je
dělitelný osmi, třemi i pěti.

Úloha 4. Určete, pro která n platí n+ 1 | n2 + 1.

Úloha 5. Označme Mn = 2n−1. Dokažte, že pokud je Mn prvočíslo, pak i n musí
být prvočíslo.

Úloha 6. Označme Kn = 2n + 1. Dokažte, že pokud je Kn prvočíslo, pak n je
nutně mocninou dvojky.

Úloha 7. Dokažte, že pro každé n > 2 existuje prvočíslo p takové, které splňuje
n < p < n!.

Největší společný dělitel

Definice. Největším společným dělitelem čísel a, b nazveme největší přirozené d
takové, že d | a, d | b. Tuto skutečnost značíme NSD(a, b) = d. Pokud d = 1, říkáme,
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že jsou čísla a, b nesoudělná.

Jedním ze způsobů jak efektivně najít největšího společného dělitele dvou přiro-
zených čísel je Euklidův algoritmus, který si představíme během přednášky.

Věta. Každé n má jednoznačný rozklad na prvočinitele n = pα11 · · · pαrr .

Úloha 8. Ukažte, že pro nesoudělná a, b platí NSD(ab, a+ b) = 1.

Úloha 9. Ukažte, že zlomek 21n+4
14n+3 je v základním tvaru.

Úloha 10. Ať Fn značí n-té Fibonacciho číslo, tedy F0 = 0, F1 = 1 a následně
Fn+1 = Fn + Fn−1. Pak dokažte, že NSD(Fa, Fb) = FNSD(a,b).

Úloha 11. V závislosti na nesoudělných a, b najděte NSD(a+ b, a2 + b2).

Kongruence

Definice. Čísla a, b jsou kongruentní modulo m, pokud m | a− b. Značíme a ≡ b
(mod m).

Tvrzení. Pro daná a,m existuje b splňující ab ≡ 1 (mod m), právě tehdy, když
jsou nesoudělná. Pak už je b jednoznačně dané modulo m a značíme ho b ≡ a−1

(mod m).

Úloha 12. Dokažte, že pro dvě přirozená čísla a, b nemůže být výraz (36a+ b)(a+
36b) mocninou dvojky.

Úloha 13. Nechť p je prvočíslo větší než 5. Dokažte, že p − 4 nemůže být čtvrtá
mocnina přirozeného čísla.

Úloha 14. Označme p(n) součin nenulových cifer čísla n. Položme T = p(1) +
p(2) + · · ·+ p(999). Určete největší prvočíslo, které dělí T .

Počítání modulo prvočíslo

Věta. (malá Fermatova) Je-li p prvočíslo a p - a, pak ap−1 ≡ 1 (mod p).

Úloha 15. Spočítejte 20232024 (mod 13).

Úloha 16. Ať jsou p, q různá prvočísla. Dokažte, že pq | pq−1 + qp−1 − 1.

Úloha 17. Dokažte, že pro každé prvočíslo p existuje kladné n takové, že 2n ≡ n
(mod p).

Úloha 18. Buď p prvočíslo. Dokažte, že všichni prvočíselní dělitelé 2p−1 jsou ≡ 1
(mod p).

Kvadratické zbytky

Definice. Celé číslo a je kvadratickým zbytkem modulo m, pokud kongruence
x2 ≡ a (mod m) má řešení.
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Úloha 19. Najděte všechny kvadratické zbytky modulo 8, 3, 5, 11.

Úloha 20. Nahlédněte, že −1 je kvadratický zbytek modulo liché prvočíslo p, právě
když p ≡ 1 (mod 4).

Úloha 21. Celá čísla x, y splňují 7 | x2 + y2. Dokažte, že x i y jsou násobky 7.

Návody

5. Použij obměnu a a− b | ak − bk.

6. Použij obměnu a a+ b | al + bl pro liché l.

7. Podívej se na n!− 1.

8. Sporem. Dokaž pomocné tvrzení p | ab =⇒ p | a nebo p | b.
9. Zkus pustit Euklidův algoritmus na výrazy s neznámou n.

10. Začni důkazem d | n =⇒ Fd | Fn.

11. Přepiš a2 + b2 jako trikový součet a pak aplikuj Euklidův algoritmus.

12. Použij modulo 8.

13. Použij vhodné modulo a kongruence.

14. Neboj se toho a zkus T natvrdo spočítat.

16. Dívej se zvlášť modulo p a q.

17. Co kdyby bylo pro jednoduchost n násobkem p− 1?

18. Začni vhodným rozkladem.

Literatura a zdroje

Tímto mockrát děkuji cvičícím předmětu Proseminář z teorie čísel, z jejichž materi-
álů jsem čerpala většinu úloh a definic.

[1] Matěj Doležálek: Proseminář z teorie čísel – shrnutí
[2] Mikuláš Zindulka: Proseminář z teorie čísel
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Konstrukce kružítkem
Matouš Šafránek

Abstrakt. V příspěvku ve formě úloh dokážeme Mohrovu–Mascheroniho větu, že
vše, co jde sestrojit pravítkem a kružítkem, jde sestrojit kružítkem samotným.

„Každou geometrickou konstrukci, kterou lze provést pravítkem a kružítkem, lze
provést samotným kružítkem.ÿ

Toto pozorování učinil již roku 1672 dánský matematik Georg Mohr, nikdo mu
však v té době nevěnoval velkou pozornost. Stejnou větu dokázal v roce 1797 Lorenzo
Mascheroni, jenž sklidil podstatně větší úspěch. Proto dnes mluvíme o konstrukcích
pomocí kružítka jako o mascheroniovských konstrukcích.

Poznámka. Leckdo by mohl namítat, že výše zmíněný výrok neplatí, protože pou-
hým kružítkem přece nejsme schopni sestrojit přímku (neumíme totiž nakreslit rov-
nou čáru). Avšak v tomto příspěvku budeme chápat přímku jako dvojici různých
bodů, jimiž je jednoznačně určena.

Kromě rýsování přímek a kružnic se veškeré konstrukce pravítkem a kružítkem
dají poskládat ze tří elementárních konstrukcí:

(1) Nalezení průsečíku dvou kružnic.
(2) Nalezení průsečíku přímky a kružnice.
(3) Nalezení průsečíku dvou přímek.

Naším cílem bude ukázat, že každou z nich zvládneme stejně dobře i bez pravítka.
Pojďme na to!

Základy

Budeme-li v následujících příkladech mluvit o úsečce AB, resp. přímce AB, máme
vždy na mysli body A, B, které ji určují.

Příklad 1. K zadané úsečce AB sestrojte úsečku dvakrát delší.

Řešení. Sestrojíme kružnici se středem B procházející bodem A. Na ni naneseme
z bodu A třikrát za sebe tutéž vzdálenost a dostaneme tak bod B′. Úsečka AB′ je
pak zřejmě dvakrát delší než úsečka AB.
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A B B0

Úloha 2. Mějme přímku AB a bod C. Sestrojte obraz bodu C v osové souměrnosti
podle přímky AB.

Úloha 3. Rozhodněte, zda leží zadané body A, B, C na jedné přímce.

Úloha 4. Je dána přímka AB a bod C. Sestrojte rovnoběžku k AB procházející
bodem C.

Úloha 5. Je dána úsečka délky a. Sestrojte délku
√

3a.

Úloha 6. Je dána úsečka AB a dvakrát delší úsečka CD. Najděte střed úsečky
CD.

Úloha 7. Je dána přímka AB a kružnice k se středem O. Předpokládejme, že bod
O neleží na přímce AB. Najděte průsečík přímky AB a kružnice k.

Jde do tuhého

Úloha 8. Je dána kružnice k se středem O a bod B vně. Sestrojte tečnu z bodu
B ke kružnici k.

Úloha 9. Najděte střed zadané úsečky AB.

Úloha 10. Sestrojte čtverec o straně AB.

Úloha 11. Je dána kružnice k se středem O a poloměrem r, dále bod B a úsečka
délky a < r. Sestrojte přímku procházející bodem B, která v kružnici k vytne tětivu
délky a.

Úloha 12. Je dána přímka AB a kružnice k se středem O tak, že O leží na AB.
Najděte průsečík přímky AB a kružnice k.

Úloha 13. Sestroj osu daného úhlu BAC.

Úloha 14. Nechť jsou a, b, c délky tří daných úseček. Najděte délku x takovou,
aby platilo a

b = x
c .

Úloha 15. Jsou dány různoběžné přímky AB a CD. Najděte jejich průsečík.

Bonusy

Úloha 16. Ukažte, že si vystačíme i s kružítkem, kterým nejde přenášet délky. Jde
tedy jen narýsovat kružnice s daným středem procházející daným bodem.
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Úloha 17. Dokážete vyřešit úlohu 15 bez použití výsledku úlohy 12?

Úloha 18. Najděte za použití co nejméně kružnic kruhovou inverzi bodu B vůči
kružnici k se středem O.

Úloha 19. Na kolik nejméně narýsovaných kružnic umíte najít střed úsečky?

Návody

4. Rovnoběžník.

5. Nejde nesestrojit :).

7. Osová souměrnost.

8. Sestroj vhodný rovnoramenný trojúhelník.

9. Sestroj vhodný rovnoramenný trojúhelník. Nebo použij mocnost.

10.
√

2.

11. Jak bys to dělal(a) s pravítkem?

12. Mocnost.

13. Jak bys to dělal(a) s pravítkem?

14. Mocnost.

15. Podobnost umíš díky předchozí úloze.

16. Osová souměrnost.

Literatura a zdroje

Rád bych poděkoval Martině, kterou sice vůbec neznám, ale převzal jsem od ní
většinu příspěvku.

[1] Martina Vaváčková: Konstrukce kružítkem, Domašov, 2012.
[2] Norbert Hungerbühler: A Short Elementary Proof of the Mohr-Mascheroni

Theorem, https: / / www . math . ch / norbert . hungerbuehler / publications /
A Short Elementary Proof of the Mohr-Mascheroni Theorem.pdf
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Lingvistika
Matouš Šafránek

Abstrakt. V příspěvku se představuje lingvistika jako obor, ve kterém se, podobně
jako v matematice, hodí schopnost hledat logické struktury. Obsahuje několik lingvis-
tických úloh převzatých z České lingvistické olympiády.

Etruská kostka

V této úloze vidíte tzv. Toskánskou kostku – archeologickou památku popsanou ná-
sledujícími etruskými slovy: ci, huth, max, sa, thu, zal. Každé z těchto slov odpovídá
jednomu z čísel mezi 1 a 6. Rozložení těchto slov na síti kostky vidíte níže:

Při překladu vycházeli lingvisté z následujících informací, které poslouží i vám:

(1) součet protilehlých stran dává dohromady vždy 7,
(2) thu, ci a zal označují (nikoli nutně v tomto pořadí) čísla 1, 2 a 3,
(3) ci, ale nikoli thu a zal , se velmi často objevují na tzv. Lněné knize, která

byla objevena na obinadle mumie a která obsahuje rituální texty,
(4) následující dvojice slov se vyskytují v epitafech (náhrobních nápisech):

thu clan; thu at; thu mezu; thu vinac; thu thuscu; ci clenar; zal clenar;
ci atr; zal atr; ci mesur; zal mesur; ci vinacr; zal vinacr; ci thuscur;
zal thuscur,

(5) v řadě starověkých středomořských kultur mělo číslo 3 zvláštní magický vý-
znam.
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Úloha. Vepište na správná místa v síti čísla odpovídající jednotlivým slovům.

ČLO-16/17-I-3

O opicích a dětech

Jazyk apinayé patří do brazilské jazykové rodiny Ge. V současnosti jím mluví méně
než 800 lidí, a je tedy vážně ohrožený.

Níže vidíte ukázku šesti vět ze zmíněného jazyka spolu s jejich českými překlady.
V jejich zápisu jsme použili i některé znaky, které nepatří ani do české, ani portu-
galské abecedy; abyste však úlohu vyřešili, nepotřebujete vědět, jak se tyto znaky
vyslovují.

Úloha. Přeložte do češtiny:

Úloha. Přeložte do apinayé:

Velké dítě pracuje dlouho.

Stará opice jí hodně.

ČLO-13/14-I-2
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Arabština

Přiřaď k českým větám (1-7) jejich arabské ekvivalenty (a-g).

ČLO-12/13-I-2

Počítání v gáwríjštině

Gáwríjština je jedním z asi 30 jazyků severopákistánských horských vesnic. Tento
jazyk se řadí do indoárijské větve indoevropské jazykové rodiny, což znamená, že je
velmi vzdáleně příbuzný češtině.

Prohlédněte si následující gáwríjské číslovky:

5 – paandž, 44 – čorteedubiš, 14 – čun, 63 – tlaateetläbiš, 24 – čorteebiš,

72 – bääteetläbiš, 33 – tlooteebiš, 81 – ääkteečorbiš, 34 – čunteebiš.

Úloha. Napište gáwríjsky: 13, 52, 61, 94.

Zde je několik dalších gáwríjských číslovek:

55 – paandžkämtläbiš, 76 – čorkämčorbiš, 97 – tlaakämpandžbiš.

Úloha. Napište gáwríjsky: 36, 57, 79, 103.

ČLO-17/18-I-2
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Čínské znaky

V následující tabulce je uvedeno několik čínských znaků, jejich fonetický přepis a
překlad do češtiny.

Úloha. Na základě informací z tabulky přiřaďte k těmto znakům český překlad:

Úloha. Přiřaďte ke znakům jejich fonetický přepis:

ČLO-12/13-I-5
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Kolik hodin je v Tallinu

Tallin je hlavní město Estonska, kde přibližně 1 milion lidí mluví estonštinou, nein-
doevropským jazykem příbuzným finštině.

Některá čísla v estonštině:

6 – kuus, 7 – seitse, 8 – kaheksa, 10 – kümme.

Úloha. Přeložte následující časy do estonštiny:

a) 8:45,
b) 4:15,
c) 11:30,
d) 7:05,
e) 12:30.

Úloha. Zapište, jaký čas označují následují estonské fráze:

a) Kakskümmend viis minutit üheksa läbi.
b) Veerand neli.
c) Pool kolm.
d) Kolmveerand kaksteist.
e) Kolmkümmend viis minutit kuus läbi.

ČLO-14/15-I-2
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Lontara

Bugijština je jazyk z austronéské rodiny, kterým mluví přibližně 5 milionů lidí v ob-
lasti ostrova Sulawesi.

Ve dvou sloupcích máte zadána slova v bugijštině v náhodném pořadí. V levém
řádku v písmu lontara, ve druhém v přepisu do latinky s českým překladem.

Poznámka: Apostrof (’) i „hÿ označují výslovnostní variantu předcházející samohlásky.

Úloha. Přiřaďte slova.

Úloha. Zapište písmem lontara:

lagoh (švagr), kabusuh (křeslo), mateh (umřít),

pasarah (trh), purinah (strýc), sikola (bronzový).
ČLO-14/15-I-1
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Jazyk ik

Jazyk ik náleží do rodiny nilo-saharských jazyků. Mluví jím necelých 10 000 obyvatel
Ugandy. Ve sloupcích tabulky níže naleznete vždy infinitiv ikského slovesa, jeho tvar
pro přítomný čas v první osobě jednotného čísla a český překlad. Některé buňky
jsou však nevyplněny.

Úloha. Doplňte obsah osmnácti nevyplněných buněk, víte-li, že chybějící české
překlady jsou (v náhodném pořadí): odeslat , setřásat , vézt , vyvést , řezat , třást , od-
ložit .

ČLO-18/19-I-3

Literatura a zdroje

Díky patří pořadatelům lingvistické olympiády a taky Michalovi, od kterého jsem
příspěvek s malou úpravou převzal.

[1] Česká lingvistická olympiáda, http://ufal.mff.cuni.cz/clo a nověji https://
lingol.cz

[2] Michal Töpfer: Lingvistika, Sklené, 2019.
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Cauchyho–Schwarzova nerovnost
Josef „Joséÿ Soural

Abstrakt. Zkráceně CS nerovnost – snad jedna z nejdůležitějších nerovností celé
matematiky. V přednášce se konkrétně seznámíme s její podobou pro reálná čísla, která
je velmi mocným nástrojem pro odhadování algebraických výrazů. Třebaže nerovností
na mezinárodních soutěží ubývá, umět používat CS nerovnost zůstává pro úspěšného
olympionika nutností. Přitom osvojení těchto technik není až tak obtížné. Rozpoznat,
zda nám v nějakém příkladě bude CS nerovnost užitečná, a zdárně ji použít je už pak
jen otázkou cviku. Tak pojďme procvičovat!

Věta. (Cauchyho–Schwarzova nerovnost) Nechť a1, . . . , an, b1, . . . , bn jsou libovol-
ná reálná čísla. Pak platí

(a21 + a22 + · · ·+ a2n)(b21 + b22 + · · ·+ b2n) ≥ (a1b1 + a2b2 + · · ·+ anbn)2.

Důkaz. Uvažujme dvě n-tice libovolných reálných čísel a1, . . . , an a b1, . . . , bn.

P (x) = (a1x− b1)2 + · · ·+ (anx− bn)2

je zřejmě nezáporný výraz pro libovolné reálné x. Jelikož je zároveň v proměnné x
kvadratický, je jeho diskriminant nekladný. Tedy

(2a1b1 + · · ·+ 2anbn)2 − 4(a21 + · · ·+ a2n)(b21 + · · ·+ b2n) ≤ 0,

z čehož úpravou dostáváme kýženou nerovnost. �

Poznámka. Rovnost nastává právě tehdy, když existuje reálné λ splňující bi = aiλ
pro všechna i od 1 do n.

Na rozehřátí

Cvičení. Dokažte nerovnost (a+ b+ c)
(
1
a + 1

b + 1
c

)
≥ 9 pro kladná a, b, c.

Cvičení. Pro x, y, z reálná dokažte 14(x2 + y2 + z2) ≥ (x+ 2y + 3z)2.
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Cvičení. (základní a užitečné fígle) Dokažte:

(1) 3(a2 + b2 + c2) ≥ (a+ b+ c)2 pro a, b, c ∈ R,
(2) n(a21 + · · ·+ a2n) ≥ (a1 + · · ·+ an)2 pro ai ∈ R,
(3) (a1 + · · ·+ an)

(
1
a1

+ · · ·+ 1
an

)
≥ n2 pro ai ∈ R+,

(4) 1
1+x + 1

1+y + 1
1+z ≥

9
3+x+y+z pro x, y, z ∈ R+,

(5)
√
x+ 1 +

√
2x− 3 +

√
50− 3x ≤ 12 pro ta x ∈ R, pro která to má smysl.

Cauchyho–Schwarzova nerovnost má dva obzvlášť užitečné speciální tvary – oba
jsou sice ekvivalentní jejímu znění, ale výrazně usnadňují intuici:

Tvrzení. (CS zlomkobijec) Nechť n ∈ N. Dále buďte a1, a2, . . . , an nezáporná a
b1, b2, . . . bn kladná. Pak platí(

a1
b1

+
a2
b2

+ · · ·+ an
bn

)
≥
(√
a1 +

√
a2 + · · ·+√an

)2
b1 + b2 + · · ·+ bn

.

Tvrzení. (CS na odmocniny) Buď n přirozené číslo a a1, a2, . . . , an, b1, b2, . . . , bn
čísla kladná reálná. Pak platí√

a1b1 +
√
a2b2 + · · ·+

√
anbn ≤

√
(a1 + a2 + · · ·+ an)(b1 + b2 + · · ·+ bn).

Vyzkoušejte si zlomkobijce

Cvičení. Nechť jsou a, b, c, d kladná čísla splňující a + b + c + d = 1. Ukažte, že
platí

a2

a+ b
+

b2

b+ c
+

c2

c+ d
+

d2

d+ a
≥ 1

2
.

(Irská MO)

Úloha 1. Nechť jsou a, b, c kladná čísla, jejichž součin je roven jedné. Dokažte, že
platí

1
a3(b+ c)

+
1

b3(a+ c)
+

1
c3(b+ a)

≥ 3
2
.

(IMO 1995)

Úloha 2. Pro kladná čísla a, b, c dokažte nerovnost

a

b+ 2c
+

b

c+ 2a
+

c

a+ 2b
≥ 1.

(Česko-slovensko-polské střetnutí)

Vyzkoušejte si odmocninového CS

Cvičení. Dokažte následující nerovnosti pro a, b, c ∈ R+:

(i)
√
a3 +

√
b3 +

√
c3 ≤

√
(a+ b+ c)(a2 + b2 + c2),

(ii) a
√
a+ b

√
b+ c

√
c ≤

√
3(a3 + b3 + c3).
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Úloha 3. Ukažte, že pro x, y, z ≥ 1 platí

√
x− 1 +

√
y − 1 +

√
z − 1 ≤

√
x(yz + 1).

Nějaké ty příklady – střední

Úloha 4. Určete všechny n-tice (x1, x2, . . . , xn) kladných reálných čísel, které vy-
hovují soustavě rovnic

x1 + x2 + · · ·+ xn =
1
4
,

1
x1

+
4
x2

+ · · ·+ n2

xn
= n2(n+ 1)2.

(Kraj MO 1981/1982)

Úloha 5. Ukažte, že pro kladná reálná a, b, c splňující a+ b+ c = 1 platí

a

1 + bc
+

b

1 + ca
+

c

1 + ab
≥ 9

10
.

Úloha 6. Kladná čísla x, y, z ≥ 1 splňují 1x + 1
y + 1

z = 2. Dokažte

√
x− 1 +

√
y − 1 +

√
z − 1 ≤

√
x+ y + z.

Úloha 7. Pro nezáporná reálná a, b dokažte

a√
b2 + 1

+
b√

a2 + 1
≥ a+ b√

ab+ 1
.

(Celostátko MO 2014)

Úloha 8. Pro kladná reálná a, b, c dokažte nerovnost

a3

a2 + ab+ b2
+

b3

b2 + bc+ c2
+

c3

c2 + ca+ a2
≥ a+ b+ c

3
.

(Turnaj měst 1998)

Nějaké ty příklady – těžší

Úloha 9. Nechť jsou a, b, c, d, e reálná čísla, která vyhovují rovnicím

a+ b+ c+ d+ e = 8,

a2 + b2 + c2 + d2 + e2 = 16.

Určete, jaké nejvyšší hodnoty může nabývat e. (USAMO 1978)
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Úloha 10. Kladná reálná x, y, z splňují x2 + y2 + z2 ≥ 3. Dokažte

x3√
y2 + z2 + 7

+
y3√

z2 + x2 + 7
+

z3√
x2 + y2 + 7

≥ 1.

Úloha 11. Pro kladná reálná a, b, c dokažte, že

a√
a2 + 8bc

+
b√

b2 + 8ca
+

c√
c2 + 8ab

≥ 1.

Úloha 12. Dokažte, že pro libovolná kladná čísla a, b, c platí

c2 − ab
4a2 + b2 + 4c2

+
a2 − bc

4a2 + 4b2 + c2
+

b2 − ca
a2 + 4b2 + 4c2

≥ −3
4
.

Úloha 13. Mějme kladná reálná a, b, c, že abc = 1. Dokažte

a2 + b2 + c2

a5 + b2 + c2
+
a2 + b2 + c2

a2 + b5 + c2
+
a2 + b2 + c2

a2 + b2 + c5
≤ 3.

(IMO 2005)

Návody

1. V čitatelích chceš netriviální druhou mocninu.

2. Po zlomkobijci roznásob a roztrhni. Bude se též hodit AG nerovnost.

3. Dvakrát použij CS ve tvaru
√

((x− 1) + 1)(1 + (y − 1)) ≥
√
x− 1 +

√
y − 1.

5. V čitatelích chceš druhou mocninu.

6. Odmocniny nalevo poděl a vynásob příslušnou proměnnou.

7. Nejdříve zlomkobijec, poté odmocniny. A nějakátá ta algebraická manipulace.

8. Zkus si jen tak pro zábavu roznásobit (a+ b+ c)(a2 + b2 + c2).

9. Odhadni vztah mezi součty druhých a prvních mocnin u prvních čtyř proměn-
ných pomocí CS.

10. Odhadni zlomkobijcem a odmocninami tak, aby pak šlo a2+b2+c2 substituovat
jednou proměnnou, která bude v nerovnostech figurovat sama.

11. Po zlomkobijci a odmocnině ekvivalentně převeď na nerovnost≥ 0. Poté použij,
že x+ 1

x ≥ 2 pro každé kladné reálné x.

12. Odečti od každého zlomku jednu čtvrtinu, ať dostaneš v čitateli druhou moc-
ninu. Použij zlomkobijce „naopakÿ.

13. Odhadni jmenovatele pomocí CS, ať se zbavíš pátých mocnin (použij podmínku
v zadání ;-)).

Literatura a zdroje

Tento příspěvek je s pouze drobnými úpravami převzat od Martina Rašky, kterému
tímto srdečně děkuji za skvělou předlohu.

[1] Martin Raška: Cauchy–Schwarzova nerovnost, Hojsova Stráž, 2016.
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Diskrétní spojitost
Anna Trnková

Abstrakt. Podíváme se na v principu jednoduchou kombinatorickou techniku zva-
nou diskrétní spojitost a její využití v různých olympiádních úlohách.

Příklad. (motivační) Na rovinné louce se pase 2023 bodových prasátek. Pastevec
Matěj se doslechl, že se k louce blíží vlk, který chce prasátka sežrat. Samozřejmě
chce prasátka zachránit, a proto by kolem nich rád postavil kruhovou ohradu (jiné
tvary neuznává). Zároveň by si ovšem rád naklonil Štěstěnu na svoji stranu, proto
by chtěl nechat právě 42 prasátek mimo ohrádku, a tím učinit krvavou oběť svému
Pánu a Spasiteli Belzebubu. Ukažte, že takovou ohrádku skutečně umí postavit.

Řešení. Nejprve ukážeme, že existuje bod B, na kterém nestojí žádné prasátko
a který zároveň nemá k žádným dvěma prasátkům stejnou vzdálenost. To plyne
z toho, že pokud má bod ke dvěma prasátkům stejnou vzdálenost, potom leží na
ose úsečky, která je spojuje. Tím máme ale zakázaný jen konečný počet (konkrétně(2023
2

)
) přímek a konečný počet bodů, což nám určitě nepokryje celou rovinu. Proto

bod B s požadovanými vlastnostmi vskutku existuje.
Nyní, když jsme hotovi s technikáliemi, přejdeme na skutečné použití diskrétní

spojitosti. Uvažujme kružnici k1 se středem v B, která neobsahuje žádné prasátko (ta
existuje – prostě zvolme poloměr menší, než je vzdálenost B k nejbližšímu prasátku).
Postupně ji nafukujme, dokud všechna prasátka neleží uvnitř kružnice. Na začátku
se mimo kružnici páslo 2023 > 42 prasátek, na konci je to 0 < 42. Protože při
nafukování najednou přidáme vždy jen jedno prasátko (protože B nemá k žádným
dvěma prasátkům stejnou vzdálenost), musí jednou určitě nastat taková situace, kdy
se právě 42 prasátek nachází mimo ohrádku.

Základní úlohy

Úloha 1. Dánsko a Anglie spolu hrály fotbal. Dánský tým dal celkem osm gólů,
kdežto anglický pět. Musel během utkání existovat okamžik, kdy se počet gólů, které
již Anglie dala, rovnal počtu gólů, které Dánsko ještě dá? (PraSe 37–1j–1)

Úloha 2. Naty k narozeninám dostala krásný kruhový dort a hned se rozhodla
půlkruhovou část z něj věnovat nejlepšímu řešiteli PraSátka. Než ji ale stihla odkro-
jit, José už dort nakrájel tradičním způsobem na právě 4k dílků tak, že 2k z nich
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bylo větších (navzájem stejných) a 2k menších (též navzájem stejných). Dokažte, že
Naty i tak našla několik sousedních dílků, které tvořily půlkruh. (PraSe 33–1j–5)

Úloha 3. V oboustranně nekonečné řadě stojí pionýři a žampióny. Je známo, že
v libovolném konečném úseku několika vedle sebe stojících organismů se počet pio-
nýrů a žampiónů liší nanejvýš o 1000. Dokažte, že v nějakém úseku 2000 organismů
stojí přesně 1000 pionýrů a 1000 žampiónů. (Itálie 2013)

Úloha 4. Nekonečná posloupnost {ai}∞i=1 splňuje, že a1 = 1 a pro libovolné při-
rozené i je rozdíl ai+1 − ai roven 0 nebo 1. Víte-li, že pro jisté n platí an = n

1000 ,
dokažte, že existuje m splňující am = m

500 .

Úloha 5. Každá ze stěn osmi jednotkových krychliček je obarvena modře, nebo
červeně, přičemž celkově je modrých stěn stejně jako červených. Dokažte, že krych-
ličky lze složit do jedné krychle 2 × 2 × 2, na jejímž povrchu bude modrá barva
zabírat stejnou plochu jako červená.

Úloha 6. Ukažte, že existuje 1000 po sobě jdoucích přirozených čísel, mezi nimiž
je právě 5 prvočísel. (PraSe 30–1p–4)

Úloha 7. Přirozené číslo n nazveme budovatelské, pokud se dá zapsat ve tvaru
n = ab + b pro přirozená čísla a, b > 1. Dokažte, že existuje úsek 2014 po sobě
jdoucích přirozených čísel s přesně x budovatelskými čísly

(i) pro x = 2012, (Srbsko 2014)
(ii) (těžší) pro libovolné x ∈ {0, 1, . . . , 2014}.

Úloha 8. Mějme úplný bipartitní graf s lichým počtem vrcholů. Každá jeho hrana
má hodnotu buď −1, nebo 1 a platí, že součet hodnot všech hran je roven nule.
Dokažte, že existuje kostra tohoto grafu, která má také součet všech hran nulový.

Úloha 9. Je dána rostoucí posloupnost přirozených čísel a0, a1, . . . Dokažte, že
existuje právě jedno přirozené n ≥ 1 splňující

an <
a0 + a1 + · · ·+ an

n
≤ an+1.

(IMO 2014)

Úloha 10. Jsou dána přirozená čísla p, q, n, kde p + q < n, a (n + 1)-tice čísel
(x0, x1, . . . , xn), pro niž platí:

(i) x0 = xn = 0.
(ii) Pro každé i ∈ {1, . . . , n} je xi − xi−1 buďto p, nebo −q.

Dokažte, že existují indexy i < j s (i, j) 6= (0, n), pro něž platí xi = xj .
(IMO 1996)

Záludnější úlohy

Diskrétní spojitost není vždy tím jediným, nebo dokonce ani ne tím hlavním, co
úloha potřebuje. Často ji potkáme jako jednu z mnoha ingrediencí, kterou je třeba
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šikovně kombinovat s něčím dalším – třeba indukcí nebo Dirichletovým principem.
Tyto úlohy neřadím nutně podle obtížnosti, spíše podle společných témátek.

Úloha 11. V každém vrcholu pravidelného 2018úhelníku seděl ráno jeden termit.
Tito termiti byli v nějakém pořadí označení čísly 1 až 2018 (každé číslo bylo použito).
Jediné, co termiti umějí, je vyměnit si místo se svým sousedem. Večer se každý termit
nacházel ve vrcholu naproti tomu, v němž začínal. Dokažte, že se někdy v průběhu
dne prohodili dva termiti se součtem čísel 2019. (PraSe 38–1p–7)

Úloha 12. (těžší) Máme n červených a n modrých karet, na každé z nichž je nějaké
číslo od 1 do n (čísla se mohou opakovat). Je vždy možné vybrat několik modrých
a několik červených karet tak, aby měly modrá a červená skupinka stejný součet?

(PraSe 40–4j–5b)

Pár úložek s posloupnostmi

Úloha 13. Uvažme posloupnost {an}∞n=0 takovou, že a0 = 0. Další členy definujme
následovně. Pro přirozené číslo n označme `n největší liché číslo, které dělí n. Pak
položme an = an−1 + 1, pokud `n dává po dělení čtyřmi zbytek 1, a an = an−1 − 1,
pokud dává zbytek 3. Dokažte, že pro každé přirozené číslo m existuje nekonečně
mnoho i takových, že ai = m. (PraSe 39–1j–5)

Úloha 14. Nechť p(n) pro přirozené číslo n > 1 značí největší prvočíslo, které dělí
n. Nekonečná posloupnost {ai}∞i=1 splňuje a1 > 1 a rekurenci ai+1 = ai + p(ai).
Dokažte, že v posloupnosti {ai} se vyskytuje čtverec. (Čína 2020)

Úloha 15. Jsou dány dvě posloupnosti {an}∞n=1 a {bn}∞n=1 přirozených čísel, při-
čemž pro všechna přirozená n je bn rovno součinu všech různých prvočísel dělících
an. Dále pro všechna n ≥ 2 platí an = an−1 + bn−1. Dokažte, že existuje přirozené
k splňující ak

bk
= 2019. (PraSe 39–2p–7)

Něco málo z kombinatorické geometrie

Úloha 16. Nechť n > 1 je přirozené číslo. V rovině se pase n bodových kraviček
a n bodových oveček. Žádná tři zvířátka neleží na jedné přímce. Balanční přímkou
nazveme přímku procházející jednou ovečkou a jednou kravičkou tak, že na každé
straně od přímky je stejně oveček jako kraviček. Ukažte, že existují alespoň dvě
balanční přímky. (USAMO 2005)

Úloha 17. V rovině je dáno n modrých a n červených bodů, přičemž žádné tři
barevné body neleží na jedné přímce. Dokažte, že lze nakreslit n úseček spojujících
modrý a červený bod tak, že žádné dvě nebudou mít společný bod (ani koncový).

Úloha 18. (těžší) Nechť S je množina alespoň dvou bodů v rovině, z nichž žádné tři
neleží na jedné přímce. Větrným mlýnem rozumíme následující proces: Na počátku
je vybrána nějaká přímka ` procházející právě jedním bodem P ∈ S. Tato přímka se
začne otáčet ve směru hodinových ručiček se středem otáčení P , dokud „nenarazíÿ
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na další bod množiny S, označme jej Q. Přímka se nadále otáčí ve směru hodinových
ručiček, ovšem se středem otáčení Q, dokud nenarazí na další bod množiny S, a tak
dále. Tento proces neustále pokračuje (nekonečně dlouho). Dokažte, že lze zvolit bod
P ∈ S a přímku ` procházející bodem P tak, že jimi začínající větrný mlýn bude
mít každý bod z S za střed otáčení nekonečněkrát. (IMO 2011)
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Návody

1. Dívej se na A−D jako funkci času. A a D jsou to, co by tak člověk čekal.

2. Posouvej zvolenou 2k-tici dílků a sleduj počet menších, které jsou zvolené.

3. Kdyby úloha neplatila, zkonstruuješ dlooouhatánský úsek s větší převahou jed-
noho organismu, než je povolena.

4. Může n
an

přeskočit celé číslo?

5. Zprvu slož krychličky libovolně, pak je otáčej, abys dosáhl(a) opačné (ne)rovno-
váhy modré a červené barvy na povrchu.

6. Na začátku číselné osy je prvočísel hodně. Zkonstruuj úsek, kde je jich fakt málo.

7. Úsek s mnoha budovatelskými čísly sestrojíš explicitně. Pro část (ii) odhadni,
kolik budovatelských čísel menších než x může existovat.

8. Součet součtů hran všech možných koster musí být také 0.

9. Co lze říct o posloupnosti dn = a0 + a1 + · · ·+ an − nan?

10. BÚNO ber NSD(p, q) = 1 a sleduj počty skoků o p v úsecích délky p+ q.

11. Neprohodivší se doplňkoví termiti museli mít stejnou cestu.

12. Nakresli si tabulku (n + 1) × (n + 1) a zanes do ní součty částečných součtů
modrých a červených karet. Rozparcelováním tabulky na slupky tvaru L kolem jed-
noho rohu spolu s diskrétní spojitostí a Dirichletem najdi dvě políčka se stejným
číslem.

13. Odvoď a2n na základě an. Z toho pak nahlédni, že posloupnost neomezeně
poroste a nekonečně častokrát se vrátí do 1.

14. Ukaž, že posloupnost bn = an
p(an)

je neomezená. Pak si můžeš zvolit nějaké
šikovné číslo, které by měla trefit.

15. Kdy posloupnost cn = an
bn

roste? Nahlédni její neomezenost – to pomůže také
ukázat, že se vždy vrátí k 1.

16. Když na konvexním obalu sousedí ovečka a kravička, je to snadné. V těžším
případě toč přímkou skrz zvířátko na konvexním obalu.

17. Snaž se vyřešit jednu libovolnou dvojici bodů. Nejde-li to snadno, rozděl úlohu
na dvě menší.

18. Zvol P , aby byl uprostřed ve směru kolmém na `. Uděl ` orientaci a sleduj,
kolik bodů je během otáčení nalevo a napravo od ní.

Literatura a zdroje

Tímto děkuji Matějovi, jehož přednášku jsem skoro beze změn převzala.

[1] Matěj Doležálek: Diskrétní spojitost, Mrtník, 2023.
[2] https://artofproblemsolving.com/community.
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Posloupnosti v teorii čísel
Marek Valkovič

Abstrakt. Příspěvek se zabývá úlohami, které zkoumají posloupnosti celých čísel
z pohledu teorie čísel. Jsou zde uvedeny obecné tipy a triky, jak k takovýmto úlohám
přistupovat, následované řadou příkladů, u kterých se v jednotlivých sekcích obtížnost
postupně zvyšuje.

Definice. Posloupnost a1, a2, a3, . . . značíme {an}∞n=1.

Definice. Posloupnost je zadaná rekurentně, pokud máme vztah, z něhož spočí-
táme n-tý člen v závislosti na několika předchozích, například an = a3n−1+2an−2+69.

Definice. Posloupnost je zadaná explicitně, pokud n-tý člen máme zadaný v zá-
vislosti na n.

Významným příkladem celočíselné posloupnosti je Fibonnaciho posloupnost.

Definice. Fibonacciho posloupnost, označovaná {Fn}, splňuje F1 = 1, F2 = 1,
Fn+2 = Fn+1 + Fn.

Existuje několik obecných rad, pomocí kterých můžeme skolit úlohy o posloup-
nostech v N:

(1) Spočítej si prvních pár členů posloupnosti, počítej dokud to nejsou moc velká
čísla. Často lze i takto primitivním způsobem zjistit důležité informace.

(2) Většinou máme n-tý člen zadaný pomocí předchozího, předchozích dvou nebo
všech předchozích členů. Algebraicky (například rozdílem či podílem dvou po
sobě jdoucích členů) si tvar uprav na jeden ze zbylých dvou.

(3) Uvědom si, co chceš dokázat, využij své znalosti teorie čísel, abys zjistil(a),
jaké vlastnosti se vyplatí zkoumat. Pokud je implikace těžko uchopitelná,
zkus ji obměnit.

(4) Posloupnost zadaná rekurentně, kde každý člen je závislý na určitém počtu
předchozích členů, se musí dříve či později modulo nějaké číslo zacyklit.

(5) Jdi opačným směrem. Spočítej nultý, minus první, minus druhý . . . člen.
(6) Vytvoř si nějakou pomocnou posloupnost, najdi si pro ni rekurentní vztah

a vztah k původní posloupnosti.
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Úloha 1. Nechť a1 = 1, an = an−1 + an−2 + · · · + a1. Dokažte, že a3k+2 je třetí
mocnina pro všechna k ∈ N0.

Úloha 2. Nechť x1 = 1, xn = 2xn−1 + 1. Dokažte, že když je xn prvočíslo, tak je
i n prvočíslo.

Úloha 3. Nechť platí a1 = 2, a2 = 5 a pro n ≥ 1

an+2 = (2− n2)an+1 + (2 + n2)an.

Dokažte, že neexistují tři přirozená čísla p, q, r taková, že apaq = ar.

Úloha 4. Dokažte, že pro všechna n ∈ N existuje k > 0 takové, že n | Fk.

Lehčí úlohy

Úloha 5. Definujme posloupnost1

a1 = 2, an+1 =

⌊
3an
2

⌋
.

Dokažte, že obsahuje nekonečno sudých i lichých čísel.

Úloha 6. Nechť {an} je posloupnost s a1 = 1, která splňuje rekurzi:

an+1 =

{
an − 2 pokud (an − 2) /∈ {a1, a2, . . . , an−1} a an − 2 > 0,

an + 3 jinak.

Dokažte, že v posloupnosti se objeví každá druhá mocnina přirozeného čísla a že
budou vždy o tři větší než předchozí člen posloupnosti.

Úloha 7. Pro posloupnost {an} platí a0 = 0, a1 = 1 a an = 3an−1 − an−2 pro
n ≥ 2. Dokažte, že když 45 dělí an, tak i 44 dělí an.

Úloha 8. Pro posloupnost {an} platí a1 = 2 a pokud n > 1, an je největší prvo-
číselný dělitel a1a2 · · · an−1 + 1. Dokažte, že 5 není v této posloupnosti.

Úloha 9. Nechť pro posloupnost {an}∞n=1 platí a1 = 1 a

an+1 =
n+ 2
n
· (a1 + a2 + · · ·+ an)

pro n ≥ 1. Vypočítejte člen a2025.

Úloha 10. Nechť posloupnost x1, x2, . . . splňuje x1 = 4 a pro n > 1 platí

xn = x1x2 · · ·xn−1 + 5.

Najděte všechny dvojice přirozených čísel (a, b), pro něž je xaxb čtverec.

1Dolní celá část x, označovaná bxc, je největší celé číslo, které je nejvýše x.
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Začíná jít do tuhého

Úloha 11. Definujme posloupnost

x1 = 1, xn+1 =
4n− 2
n+ 1

· xn.

Dokažte, že všechny členy této posloupnosti jsou celá čísla.

Úloha 12. Nechť a1 = 0 a an+1 = 2an +
√

1 + 3a2n pro přirozená n ≥ 1. Dokažte,
že pro všechna přirozená n je an celé číslo.

Úloha 13. Nechť a1 = b1 = 1 a

an+1 = 9an − 2bn,

bn+1 = 2an + 4bn.

Ať cn = an + bn. Dokažte, že neexistují tři různá přirozená čísla k, `, m taková, že
c2k = c`cm.

Úloha 14. Pro přirozené číslo c > 1 zaveďme posloupnost reálných čísel {xn}∞n=1
pomocí x1 = c a předpisu

xn+1 = c · xn +
√
c2 − 1 ·

√
x2n − 1

pro všechna n. Dokažte, že každé xn je celé číslo. (PraSe 43–1j–8)

Olympiádní

Úloha 15. Dokažte, že pro každé přirozené číslo m existuje index k, pro nějž
m | F 4k − Fk − 2. (CPS 2007)

Úloha 16. Pro posloupnost kladných celých čísel {an} platí pro každé n > 2

an = a1a2 + a2a3 + · · ·+ an−2an−1 − 1.

Dokažte, že:
a) některé prvočíslo je dělitelem nekonečně mnoha členů této posloupnosti.
b) takových prvočísel je nekonečně mnoho. (Celostátko 2023)

Úloha 17. Rozhodněte, zdali existuje nekonečná posloupnost přirozených čísel
{an}∞n=1, která splňuje

an+2 = an+1 +
√
an+1 + an

pro každé přirozené n. (EGMO 2015)
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Úloha 18. Přirozená čísla a0, a1, a2, . . . , a3030 splňují

2an+2 = an+1 + 4an

pro n = 0, 1, 2, 3, . . . , 2028. Dokažte, že alespoň jedno z čísel a0, a1, a2, . . . , a3030 je
dělitelné 22020 (EGMO 2020)

Úloha 19. Pro posloupnost {an} platí a0 = 2, a1 = 4 a

an+1 =
anan−1

2
+ an + an−1.

Najděte všechna prvočísla p, pro něž existuje přirozené m splňující p | am − 1.
(MEMO 2012)

Úloha 20. Pro dané celé číslo a0 > 1 definujme posloupnost a0, a1, a2, . . . předpi-
sem

an+1 =

{ √
an pokud

√
an je celé číslo,

an + 3 jinak, pro každé n ≥ 0.

Určete všechny hodnoty a0, pro které existuje číslo A takové, že rovnost an = A
platí pro nekonečně mnoho indexů n. (IMO 2017)
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Návody

5. Sporem. Rozděl na případy, kdy je an sudé a liché.

6. Modulo 5.

7. Prostě spočítej délky period modulo 9, 5, 4 a 11.

8. Kdyby ano, jak musí vypadat předchozí člen? Pak zkus modulo 4.

9. Vyjádři si součet prvních n členů jako Sn, hledej teleskop.

10. Uvědom si, že každé dva členy jsou nesoudělné. Zdůvodni, proč členy pro n > 2,
nemohou být čtverce.

11. xn = xn
xn−1

· · · x3x2 ·
x2
x1
· x1.

12. Přepiš si to do kvadratické rovnice. Udělej to pro dva sousední členy a použij
Viètovy vztahy.

13. Modulo 8 a 3.

14. Přepiš si to do kvadratické rovnice, z Viètových vztahů najdi lineární vztah.

15. F−1 = −1.

16. Vyjádři si an v závislosti na předchozích dvou členech.

17. Zkoušej, jak dlouho mohou být součty dvou po sobě jdoucích členů čtverce.

18. Podívej se na dělitelnost čtyřmi.

19. Přičti dva, uprav na součinový tvar a udělej si pomocnou posloupnost bn =
an+2
2 .

20. Mod 3. Najdi nejmenší člen posloupnosti.

Literatura a zdroje

Děkuji Majdě Mišinové, od které jsem přednášku z velké části převzal, a také panu
docentu Bártovi, jehož přednáška mě inspirovala, abych přednášel stejné téma.

[1] Magdaléna Mišinová: Posloupnosti v teorii čísel, Meziměstí, 2022.
[2] https://artofproblemsolving.com/community/
[3] https://www.matematickaolympiada.cz/
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Pryč s exponenty! (aneb p-valuace a LTE)
Adéla Karolína Žáčková

Abstrakt. Pokud řešíme úložky z teorie čísel, dost často nám nestačí zjistit, jestli
nějaké číslo dělí druhé. Občas potřebujeme zjistit i jak moc. A přesně tím se zabývají
p-valuace. Postupně se naučíme s nimi pracovat a používat je v rozličných situacích,
abychom mohli rozlousknout i záludnější příklady.

Definice. Pro celá čísla a, b říkáme, že a dělí b (značíme a | b), pokud existuje celé
číslo c splňující b = ac.

Definice. (p-valuace) Pro prvočíslo p definujeme p-valuaci celého čísla a 6= 0 jako
největší nezáporné celé k takové, že pk | a. Značíme vp(a) = k. Pro a = 0 budeme
brát vp(a) =∞ pro každé p.

Tato spousta matematických značek nám vlastně jinými slovy říká, že p-valuace
je exponent u p v prvočíselném rozkladu čísla a. Právě prvočíselný rozklad nám dost
často pomůže nahlédnout nejen základní vlastnosti, jak uvidíme dále.

A k čemu že ty p-valuace jsou?

Tvrzení. Platí a | b, právě pokud vp(a) ≤ vp(b) pro každé prvočíslo p.

Tvrzení. Pro a, b > 0 platí a = b, právě když vp(a) = vp(b) pro každé prvočíslo p.

Tvrzení. Platí vp(ab) = vp(a) + vp(b). V důsledku toho i pro celé k: vp(ak) =
kvp(a).

Tvrzení. Platí vp(a + b) ≥ min{vp(a), vp(b)}. Pokud navíc vp(a) 6= vp(b), potom
v předchozí nerovnosti nutně nastane rovnost. Obdobná nerovnost rovněž platí pro
rozdíl a− b.

Cvičení. Rozmyslete si, že p-valuace se dají rozumně dodefinovat i pro racionální
čísla a že i po tomto rozšíření většina z předchozího stále platí.

Tvrzení. Přirozené číslo a je k-tou mocninou přirozeného čísla právě tehdy, když
k | vp(a) pro každé prvočíslo p.
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Tvrzení. Nechť gcd(a, b) značí největšího společného dělitele čísel a, b a lcm(a, b)
nejmenší společný násobek čísel a, b. Potom platí

vp(gcd(a, b)) = min{vp(a), vp(b)}, vp(lcm(a, b)) = max{vp(a), vp(b)}.

Pojďme si p-valuace trochu ohmatat

Pokud jsi zkušený p-valuačník, tuto sekci směle přeskoč. Jinak se ti ale může hodit
se s vlastnostmi p-valuací trošku více seznámit. :)

Cvičení. Spočítejte následující hodnoty:

(1) v2(2n + 4),

(2) v3(v3(1818)),

(3) vp((3p3 + p2)(p3 + 2p2 + 5p)).

Cvičení. Máme tři čísla, z nichž žádné není dělitelné 8 ani 125. Kolika nejvíce
nulami může končit jejich součin?

Cvičení. Nahlédněte, že pro přirozené n je vp(n) ≤ logp n ≤ n− 1.

Někdy by se mohlo hodit. . .

V další sekci jsou známé věty z teorie čísel, které se možná pro řešení některých
příkladů budou hodit. Pozor ale, nesnažte se je rvát na každý příklad, to fungovat
spíš nebude. ;)

Věta. (Bertrandův postulát) Pro každé přirozené číslo n ≥ 2 existuje prvočíslo p
splňující n < p < 2n.

Věta. (Malá Fermatova) Pro každé prvočíslo p a každé celé a platí ap ≡ a (mod p).
Pokud jsou a a p nesoudělná, platí rovněž ap−1 ≡ 1 (mod p).

A teď už hurá na nějaké příklady!

Úloha 1. Dokažte, že pro libovolná přirozená čísla a, b, c platí

(gcd(a, b, c))2

gcd(a, b) · gcd(b, c) · gcd(c, a)
=

(lcm(a, b, c))2

lcm(a, b) · lcm(b, c) · lcm(c, a)
.

Úloha 2. Jsou dána přirozená čísla a, b taková, že

a | b2, b2 | a3, a3 | b4, b4 | a5, a5 | b6, . . .

Dokažte, že a = b.

Úloha 3. Mějme čísla a, b, c, pro která platí a | b3, b | c3, c | a3. Dokažte, že pak
platí abc | (a+ b+ c)13.
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Úloha 4. Dokažte, že pro přirozená a, b, c, d splňující ab = cd platí

gcd(a, c) · gcd(a, d) = a · gcd(a, b, c, d).

Úloha 5. Jsou dána přirozená a, b, c splňující ab | bc, ac | cb. Dokažte, že a2 | bc.
Úloha 6. Řekneme, že kladné reálné číslo je copaté, pokud není celé a v jeho
desetinném zápisu následuje za desetinnou čárkou jen konečně mnoho nenulových
číslic. Rozhodněte, zda existují copatá čísla a, b, c taková, že všechna tři čísla ab, bc
i ca jsou celá. (MO 64–C–II–4)

Úloha 7. Racionální číslo nazýváme mocným, pokud jej lze vyjádřit ve tvaru mk

n
pro nějaká nesoudělná kladná celá m,n a nějaké celé k > 1. Jsou dána kladná
racionální čísla a, b, c taková, že abc = 1. Dále nechť existují kladná celá x, y, z, že
ax + by + cz je celé číslo. Dokažte, že a, b, c jsou všechna mocná.

Faktoriály a kombinační čísla

Jakmile se člověk setká v příkladu s faktoriálem, má asi tendenci začít trochu fňukat.
Přece jenom, pro velká čísla nám vznikají pěkné obludnosti. Hodí se ho tedy nějak
pěkně odhadnout. My to umíme pomocí tzv. Legendreovy formule, která sice až
zas tak pěkně nevypadá (suma spousty dolních částí, fuj ble), ale dá se s ní dobře
pracovat, alespoň co se dělitelnosti týče.

Tvrzení. (Legendreova formule) Pro každé přirozené číslo n platí

vp(n!) =
∞∑
j=1

⌊
n

pj

⌋
.

Poznámka. Součet ve vzorci je sice formálně nekonečný, pro libovolné p však od
dostatečně velkého j bude pj větší než n a pak budeme přičítat pouze nuly.

Věta. (Lagrange) Nechť sp(n) značí ciferný součet přirozeného čísla n v soustavě

o základu p. Potom platí vp(n!) = n−sp(n)
p−1 .

Věta. (Kummer) Kombinační číslo
(
n
k

)
má p-valuaci rovnou počtu „přenosů jed-

ničky do vyššího řáduÿ při sčítání k a n− k pod sebou v soustavě o základu p.

Cvičení.

(1) Rozložte 15! na prvočísla.
(2) Určete, kolika nulami končí 100!.
(3) Dokažte, že čísloN = 46!·47!·48! není druhou mocninou celého čísla a najděte

jeho největší dělitel, který druhou mocninou celého čísla je.

Úloha 8. Pro prvočíslo p platí pn - ((p− 1)n)!.

Úloha 9. Platí vp(n!) ≤
⌊
n−1
p−1

⌋
.
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Úloha 10. Najděte všechna přirozená n, pro něž v2(n!) = n− 1.

Úloha 11. Pro libovolná celá nezáporná m, n je

(2m)!(2n)!
m!n!(n+m)!

celé číslo.

Úloha 12. Dokažte, že pro přirozená n platí

(n+ 1) · lcm

((
n

0

)
,

(
n

1

)
, . . . ,

(
n

n

))
= lcm(1, 2, . . . , n+ 1).

Úloha 13. Dokažte, že existuje konstanta c taková, že pro libovolná přirozená a,
b, n splňující a! · b! | n! nutně platí a+ b < n+ c log n. (Erdős)

Úloha 14. Pro přirozené n ≥ 3 definujme posloupnost přirozených čísel α1, . . . , αk
pomocí rozkladu

n! = pα11 p
α2
2 · · · p

αk
k ,

kde p1 < p2 < · · · < pk jsou prvočísla. Najděte všechna n, pro něž je posloupnost
α1, . . . , αk geometrická. (MEMO 2017 T8)

Úloha 15. Najděte všechna složená kladná celá čísla n splňující následující vlast-
nost: pokud kladní dělitelé n jsou 1 = d1 < d2 < · · · < dk = n, pak di | di+1 + di+2
pro všechna 1 ≤ i ≤ k − 2.

(IMO Shortlist 2023)

Úloha 16. Je dáno kladné celé číslo a. Říkáme, že kladné celé číslo b je a-dobré,
pokud je číslo

(
an
b

)
− 1 dělitelné an+ 1 pro všechna kladná celá n taková, že an ≥ b.

Nechť b je a-dobré kladné celé číslo, ale b + 2 a-dobré není. Dokažte, že b + 1 je
prvočíslo. (IMO shortlist 2019)

Lifting the exponent (LTE)

Dost často se setkáváme s rozdíly mocnin. Následující tvrzení a větičky nás dovedou
až k Lifting the exponent (LTE) lemmatu. To nám poradí, co s nimi, abychom na ně
jenom smutně nekoukali. Ale pozor! Předpoklady ve větách typicky nebývají jenom
na okrasu, proto je důležité zkontrolovat, že opravdu všechny platí.

Lemma. Nechť je p libovolné prvočíslo, m přirozené číslo a x, y celá čísla taková,
že p - m,x, y, ale p | x− y. Potom vp(xm − ym) = vp(x− y).

Lemma. Nechť je p > 2 prvočíslo a x, y celá čísla splňující p - x, y, ale p | x − y.
Potom vp(xp − yp) = vp(x− y) + 1.

Cvičení. Rozmyslete si, proč je v lemmatu uvedena podmínka p > 2.
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Věta. (Lifting the exponent lemma) Nechť je p liché prvočíslo, n přirozené číslo
a x, y celá čísla splňující p - x, y, ale p | x− y. Potom

vp (xn − yn) = vp(x− y) + vp(n).

Poznámka. Pokud je n liché, pak nahrazením y za −y získáme obdobné tvrzení
i pro součet namísto rozdílu.

Cvičení. Rozmyslete si, že všechny podmínky v LTE jsou potřebné, tedy, najděte
protipříklady, kdy kvůli nějaké vynechané podmínce rovnost neplatí.

Věta. (LTE pro dvojku) Nechť je n sudé přirozené číslo a x, y lichá celá čísla.
Potom

v2 (xn − yn) = v2(x− y) + v2(x+ y) + vp(n)− 1.

Poznámka. To vypadá jako docela nešikovný dlouhý vzorec. My si ale uvědomíme,
že jedno z v2(x ± y) musí být rovno jedné. Tím se nám pak vzorec zjednoduší na
jednu z následujících dvou možností:

v2(x− y) + v2(n) nebo v2(x+ y) + v2(n).

Tvrzení. Budiž p prvočíslo a nechť p - a, b. Pokud je k nejmenší přirozené číslo
splňující p | ak − bk, pak pro přirozené n platí p | an − bn právě tehdy, když k | n.

Dost vykecávání a hurá na úložky!

Úloha 17. Je dáno přirozené k. Najděte všechna přirozená n splňující 3k | 2n− 1.

Úloha 18. Dokažte, že pro liché prvočíslo p, přirozené a a n ≥ 2 platí pn | ap − 1
právě tehdy, když pn−1 | a− 1.

Úloha 19. Dokažte, že pro každé přirozené n lze zvolit přirozené k tak, že

7n | 2k + 3k + 4k − 1.

Úloha 20. Prvočíslo p a přirozená a, n splňují 2p + 3p = an. Dokažte, že n = 1.
(Irsko)

Úloha 21. Přirozená a, n, k splňují n | (a−1)k. Dokažte n | an−1+an−2+· · ·+a+1.

Úloha 22. Najděte všechny trojice (x, y, p), kde x, y jsou přirozená čísla a p pr-
vočíslo splňující px − yp = 1.

Úloha 23. Je dáno bezčtvercové1 přirozené n. Dokažte, že neexistují nesoudělná
přirozená čísla x, y splňující (x+ y)3 | xn + yn.

Úloha 24. Mějme liché přirozené n > 1 a nesoudělná přirozená a > b. Dokažte,
že an − bn má prvočíselného dělitele, který nedělí a− b.

1Přirozené číslo nazýváme bezčtvercovým, pokud není násobkem žádného a2 pro a > 1.
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Úloha 25. Najděte všechna přirozená n splňující 2n | 3n − 1.

Úloha 26. Najděte všechny dvojice přirozených čísel (a, b), které splňují ba | ab−1.

Úloha 27. Najděte všechna přirozená a, pro něž je 4(an+1) třetí mocninou celého
čísla pro každé přirozené n.

Úloha 28. Pokud pro přirozená a, b, c platí c | ac − bc, pak už i c | a
c−bc
a−b .

Úloha 29. Buďte a, b racionální čísla. Pokud je an − bn celé číslo pro nekonečně
mnoho různých přirozených n, pak už jsou obě a, b celá.

Úloha 30. Budiž k > 1 přirozené číslo. Dokažte, že existuje nekonečně mnoho
přirozených n splňujících

n | 1n + 2n + · · ·+ kn.

Úloha 31. Najděte všechna přirozená n, pro která je 2n+2(2n − 1) − 8 · 3n + 1
čtverec. (Vietnam)

Úloha 32. Najděte všechna kladná celá čísla a, b, c a prvočíslo p, takové, že platí
2apb = (p+ 2)c + 1. (China TST 2022)

IMO úlohy (aneb nebylo to nějaké jednoduché?)

Úloha 33. Najděte největší mocninu 1991, která dělí číslo

19901991
1992

+ 19921991
1990

.

(IMO shortlist 1991)

Úloha 34. Najděte všechny dvojice přirozených čísel (n, k), které splňují

(2k − 1)(2k − 2)(2k − 4) · · · (2k − 2k−1) = n!.

(IMO 2019)

Úloha 35. Je dána nekonečná posloupnost a1, a2, a3, . . . přirozených čísel taková,
že

a1
a2

+
a2
a3

+ · · ·+ an−1
an

+
an
a1

je přirozené číslo pro všechna n ≥ k, kde k je nějaké pevné přirozené číslo. Dokažte,
že an = an+1 pro všechna n ≥ m, kde m je nějaké pevné přirozené číslo.

(IMO 2018)

Úloha 36. Najděte všechny trojice (p, x, y), kde p je prvočíslo a x, y jsou přirozená
čísla taková, že xp−1 + y i x+ yp−1 jsou mocniny p. (IMO shortlist 2014 N5)

Úloha 37. Najděte všechny trojice (a, b, p) kladných celých čísel takové, že p je
prvočíslo a ap = b! + p. (IMO 2022)
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Návody

1. BÚNO si seřaď valuace, potom přímočaře počítej.

2. an | bn+1 znamená vp(a)
vp(b)

≤ n+1
n . V podstatě totéž jde říct s logaritmem místo

valuací.

3. Prostě si vyjádři nerovnosti mezi p-valuacemi a ono to vyjde. ;)

4. Označ si p-valuace jednotlivých proměnných a rozebírej jejich možné pořadí.

5. AG nerovnost.

6. Umíš získat nezáporné 2-valuace a 5-valuace u každého ze součinů?

7. Koukni na nějaké prvočíslo p, že vp(a) ≥ 0. Jak musí vypadat zbytek? Chytře
si vyjádři valuace b a c.

8. V Legendreově formuli zahoď celé části.

9. Ukonči součet u indexu j = k takového, že 1 ≤ n
pk

< p a využij bxc + byc ≤
bx+ yc.
10. V nerovnostech z důkazu předchozí úlohy musela všude nastat rovnost.

11. Odhadni zvlášť každý člen⌊
2m
pj

⌋
+

⌊
2n
pj

⌋
−
⌊
m

pj

⌋
−
⌊
n

pj

⌋
−
⌊
n+m

pj

⌋
z Legendreovy formule.

12. Využij Kummerovu větu. Pokud α = vp(n+ 1), pak n+ 1 zapsané v soustavě
o základu p končí α nulami.

13. Dělitelnost dává nerovnost (třeba) 2-valuací. Vhodně odhadni celé části v ne-
nulových členech, těch je asymptoticky log n.

14. Hodí se Bertrandův postulát.

15. Co kdyby mělo n dva prvočíselné dělitele? S technikáliemi pomůžou p-valuace.

16. Ukaž, že číslo b je a-dobré právě tehdy, když b je sudé a pro všechna prvočísla
p ≤ b platí p | a.

17. Přímočaře použij LTE. Pozor na předpoklady!

18. Nezapomeň na předpoklady LTE. Hodí se malá Fermatova věta.

19. Vol k tak, aby vznikly dvě LTEčkové dvojice.

20. LTE něco poví o 5-valuaci. Dej pozor na případ p = 2.

21. LTE na an − 1. Nezapomeň pečlivě ověřit předpoklady.

22. Převeď yp na pravou stranu a podívej se na p-valuaci.

23. Chceš aplikovat LTE a využít vp(n) ≤ 1, dej však pozor na degenerované
případy související s dvojkou.
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24. Má-li an−bn pouze prvočíselné dělitele, kteří dělí a−b, pak dovedeš odhadnout
všechny p-valuace.

25. Rozkládej 3n − 1 = (3n/2 + 1)(3n/2 − 1), dokud to jde.

26. Nejtěžší část: dokaž, že nejmenší prvočíslo p | b také dělí a − 1. Potom rozliš
paritu p, použij LTE a pečlivě odhadni n− vp(n).

27. Pokud má 4(an + 1) lichého prvočíselného dělitele p, podívej se na 4(apn + 1).

28. Pro každé prvočíslo p | c rozliš případy dle toho, zda p | a− b a zda p | a, b.
29. Předpokládej, že společný jmenovatel má prvočíselného dělitele, a najdi spor.
Hodí se tušit něco o řádech prvků modulo p.

30. Zkus n = pm, trik je ve správné volbě lichého prvočísla p. Zkus použít LTE na
„zrcadlovéÿ členy.

31. Pojmenuj si čtverec a2 a uprav na součin. Potom zkoumej 3-valuaci, zbav se a
a omez n.

32. Podívej se na dva případy podle parity c. Pokud je c liché, tak rozliš 2 případy
podle toho, jestli je p+3 mocninou dvojky. V sudém případě časem využij 2-valuaci.

33. Prostě si vyrob LTEčkový tvar a moc se s tím nepárej.

34. Pomocí 2-valuace a 3-valuace omez k, zbytek dorozeber.

35. Stačí ukázat, že nepřibývají nová prvočísla a všechny p-valuace jsou od nějaké
chvíle nerostoucí. Rozliš případy podle toho, zda někdy (za indexem k) nastane
vp(an) ≥ vp(a1).
36. Připrav se na spoustu rozebírání rozbitých případů. Hlavní myšlenka je hledat
velké valuace p v rozdílech y − x potažmo yp − xp.
37. Nejprve vyluč b = 1 a 2 ≤ b < p. Pro b ≥ p ukaž a = p a pak se podívej na
2-valuace.
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