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Introduction

Combinatorics on words is engaged in looking for regularities in words. For in-
stance van der Waerden‘s Theorem shows, that every sufficiently long word possesses
prescribed arithmetic progression of one letter. We will introduce another situation
– not every (long) word contains a square, although it seems on the contrary (try to
find any!).

Let N denote the set of all natural numbers {0, 1, . . . }. By an alphabet we mean a
finite nonempty set, its elements are called letters. A word over alphabet A is a finite
sequence of letters from A. Empty word (sequence of length 0) is denoted ε. The set

of all words over an alphabet A we denote A∗ and A+ = A∗ \ {ε}.

Concatenation of words u and v is denoted by uv. A morphism between A∗ and B∗

is a map f : A∗ → B∗ such that f(ε) = ε and f(uv) = f(u)f(v) for every u, v ∈ A∗.
A word u is called a factor of v, if there exist words x, y such that v = xuy. The word
u is called a left factor , if x = ε. If u is a word, than |u| means length of the word and

uR is a word read in an opposite direction. Palindrome is such word, that u = uR.

A square is a word of the form uu, where u is some nonempty word. Word contains
a square, if one of its factors is square. Otherwise we call the word square-free. E.g.
abcacbacbc contains the square acbacb, but abcacbabcb is square-free (as will be shown
later).

We will construct an infinite square-free word over an alphabet with three let-
ters. Clearly, then there exist infintely many finite square-free words. There exists no
square-free word over two-letter alphabet of the length more then 3 (the only ones are
a, b, ab, ba, aba, bab). The infinite square-free word will be derived from the so-called
word of Thue-Morse, which contains no factor of the form avava, where a is a letter
and v is a word.

Axel Thue, Norwegian mathematician, was first who was interested in this topic.
He constructed the same words as we will in his papers written in 1906 and 1912.
This was independetly described and improved by M. Morse in 1921. Then many
other papers were written on related topics.

20



David Stanovský: Square free words

Preliminaries

Let A denote an alphabet. Let u, v ∈ A+, u occures at least twice in v. Then there
exist x, y, x′, y′ ∈ A∗ such that |x| < |x′|, |y| > |y′| and v = xuy = x′uy′. Occurences
of u in v are called

(1) disjoint , if |x′| > |xu|, i.e. v = xuzuy′ for some z.
(2) adjacent , if |x′| = |xu|, i.e. v = xuuy′.
(3) overlapping , if |x′| < |xu|.

A good description of the third possibility is provided by the following lemma. By
an overlapping factor we mean a factor of the form avava, where a ∈ A, v ∈ A∗.

Lemma. A word w ∈ A∗ contains two overlapping occurrences of some nonempty

word, iff it contains some overlapping factor.

Proof.

I. Let w = xuy = x′uy′ such that 0 ≤ |x| < |x′| < |xu| < |x′u| ≤ |w|. Then
x′ = xs, xu = x′z, x′u = xut for some nonempty words s, z, t. Then (∗) u = sz = zt.
Denote a the first letter of s, i.e. of z too (by (∗)). So s = as′, z = az′. Thus u = sz =
as′az′, so w = x′uy′ = xsuy′ = xas′as′az′y′ and clearly as′as′a is an overlapping
factor in w.

II. If w = xavavay, then ava has an overlapping occurrence in w.

By word we mean always finite word. Now we will define an infinite word . It is
an infinite sequence of letters, i.e. a function a : N → A, denoted by a = a0a1a2 . . . ,

where ai = a(i) for each i ∈ N. Let us define a[k] = a0 . . . ak−1 and call it a left factor

of a of the length k. If u = a[k], then we shall write a = ub, where b is such that
bi = ai+|u|, i ∈ N. A word u we call a factor of a, if a = xub for some x and b.

Inifinite words are useful for decription of properties of finite words which are
stable for factors. It means that if some word possesses this property, then so do all
its factors. Clearly square-freeness is stable for factors.
We say, that an infinite word a has a property P , if all its factors do so. This

clarifies the sense of the term ”infinite square-free word”.
Let us denote LP the set of all words with the property P . Thus, if P is stable for

factors and w ∈ LP , then all factors of w are in LP .

Lemma. Let P be a property of words over A stable for factors. Then LP is infinite,

iff there exist an infinite word over A having the property P .

Proof.

I. Suppose LP infinite and A finite. There must exist some a0 ∈ A such that infinitely
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many words from LP start with a0. Let us denote L0 = {b ∈ LP : b = a0y for
some y ∈ A∗}. The same argument allows us to construct by induction sets L1, L2,
. . . of words starting by a0a1, a0a1a2, . . . Letters a0, a1, . . . form an infinite word
a = a0a1 . . . with the property P .

II. Converse direction is quite clear. If a is an infinite word with the property P , then

for every i natural a[k] ∈ LP , so LP is infinite.

The proof shows us an algorithm for derivation of the infinite word with P from
infinitely many finite words possessing P .

Let us consider a sequence w0, w1, . . . of words over A such that wn is a left factor

of wn+1 for all n natural. Denote a an infinite word satisfying a[k] = wn for all
k = |wn|, n ∈ N. We write a = limwn and call it a limit of sequence (wn)

∞
n=0.

Imagine this special case. Let α : A∗ → A∗ be a morphism satisfying α(a) 6= ε

for all a ∈ A and ∃a0 ∈ A such that α(a0) = a0u for some u ∈ A+ (we say that α

satisfies (♥) for a0). Thus for every n natural αn+1(a0) = αn(α(a0)) = αn(a0u) =

αn(a0)α
n(u), so αn(a0) is a left factor of αn+1(a0). The limit of this sequence is

called limit of iterating α on a0 and it is denoted α∞(a0).

There is natural extension of a morphism α : A∗ → A∗ to infinite words over A.
For b = b0b1 . . . is α(b) = α(b0)α(b1) . . . — it is an infinite word because of the first
condition in (♥).

Lemma. Let α satisfies (♥) for a0 and a = α∞(a0). Then α(a) = a.

Proof.

If u is a left factor of α(a), then so is α(u). Thus every αn(a0) is a left factor of
α(a). But α(a) starts with a0 (the second condition in (♥)), so α(a) = limαn(a0) =
α∞(a0) = a.

Words od Thue-Morse

Let A = {a, b} in the rest of the paper. For every w ∈ A∗ we denote w the word
obtained from w by replacing a to b and vice versa.

Let µ : A∗ → A∗ is a morphism defined by µ(a) = ab and µ(b) = ba. Clearly µ
satisfies (♥) for a and b. Denote

t = µ∞(a) = abbabaabbaababbabaababbaabbabaab. . .

t = µ∞(b) = baababbaabbabaababbabaabbaababba. . .

Lemma. Let u0 = a, v0 = b, un+1 = unvn, vn+1 = vnun for all natural n. Then for
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all n ∈ N hold

(1) un = µn(a), vn = µn(b).
(2) vn = un, un = vn.

(3) u2n, v2n are palindromes, u
R
2n+1 = v2n+1

Proof.

By induction on n. The case n = 0 is clear.

(1) un+1 = unvn = µn(a)µn(b) = µn(ab) = µn(µ(a)) = µn+1(a). The rest is
similar.

(2) vn+1 = vnun = unvn = unvn = un+1. The rest is similar.

(3) u2n+2 = u2n+1v2n+1 = u2n+1u
R
2n+1 which is a palindrome. For vn similar.

uR
2n+1 = (u2nv2n)

R = vR
2nuR

2n = v2nu2n = v2n+1.

Now we will prove, that t contains no overlapping factor. Then t is also cube-free,
because if uuu is a factor of t, u = au′ for a ∈ A, then au′au′a is an overlapping
factor of t providing contradicition.

We will need two lemmas.

Lemma 1. If X = {ab, ba}, x ∈ X∗, then axa /∈ X∗, bxb /∈ X∗.

Proof.

Let x ∈ X∗. We use induction on |x|. For |x| = 0 is aa, bb /∈ X∗. Now let x satisfies
axa ∈ X∗ and for all shorter words proposition holds. Let us write axa = u0 . . . uk,
ui ∈ X. Thus must be u0 = ab and uk = ba. So u = u1 . . . uk−1 ∈ X∗, u is shorter
then x and bub = x ∈ X∗. That is contradiction with an induction assuption. For bxb
similarly.

Lemma 2. If w ∈ A+ contains no overlapping factor, then neither does µ(w).

Proof.

Suppose µ(w) contains an overlapping factor. Then µ(w) = xcvcvcy for some x, v, y ∈
A∗, c ∈ A. Note, that µ(w) ∈ X∗ for X = {ab, ba} and thus |µ(w)| is even. But |cvcvc|
is odd, so either

(1) |x| is odd, |y| is even and thus xc, vcvc, y ∈ X∗, or
(2) |x| is even, |y| is odd and thus x, cvcv, cy ∈ X∗.

In both cases is |v| odd (if it is even, then cvc ∈ X∗, v ∈ X∗ contradicting lemma 1).
So either vc ∈ X∗ or cv ∈ X∗.

(1) We can write w = rsst so that µ(r) = xc, µ(s) = vc, µ(t) = y. Words r, s
finish by the same letter c, so r = r′c, s = s′c. Thus w = r′cs′cs′ct contains
an overlapping factor, contradiction.
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(2) We can write w = rsst so that µ(r) = x, µ(s) = cv, µ(t) = cy. Words s, t
start by the same letter c, so s = cs′, t = ct′. Thus w = rcs′cs′ct′ contains an
overlapping factor, contradiction.

Theorem. An infinite word t contains no overlapping factor.

Proof.

Let x be an overlapping factor in t. There must exist (sufficiently large) k such that

µk(a) has an overlapping factor x. But a doesn’t have any overlapping factor, so by

lemma 2 also µ(a) doesn’t, so also µ2(a), etc., also µk(a) has no overlapping factor.
That is contradiction.

Square-free words

We know, that no square-free word longer then 3 occurs over two-letter alphabet.
So let B = {a, b, c} and

δ : B∗ → A∗, δ(a) = abb, δ(b) = ab, δ(c) = a.

If a is an infinite word without overlapping factors strating with letter a, then there
is a unique factorization a = y0y1 . . . , where yn ∈ {a, ab, abb} = δ(B) for all n ∈ N.
It is true, because every a in a is followed by at most two letters b and then again
by a (a is cube-free). So with every a starts some wn ∈ δ(B) of the length (number
of b)+1. Thus it is clear, that there exist a unique infinite word b over B such that
δ(b) = a.

Theorem. If a is an infinite word over A starting with a without overlapping factors
and b is such that δ(b) = a, then b is square-free.

Proof.

Let b contains a square uu, denote d next letter after one of its occurrences (i.e.
b = xuudc for some x,c). Hence δ(uud) is a factor of a. Denote v, w words satisfying
δ(u) = av, δ(d) = aw. Then δ(uud) = δ(u)δ(u)δ(d) = avavaw is a factor of a, so a
contains an overlapping factor. Contradiction.

Let us denote m the square-free word obtained from t (i.e. δ(m) = t). One can
check, that

m = abcacbabcbacabcacbacabcbabcacbabcbacabcbabc . . .

The theorem does not hold conversely – there exists a square-free infinite word b
over B, such that δ(b) has an overlapping factor.

We can also systematically generate finite square-free words by so called square-
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free morphisms. That are such morphisms α : A∗ → B∗ that satisfy α(A) 6= {ε} and
for every square-free word w is α(w) square-free. E.g. a morphism

ϕ : B∗ → B∗, a 7→ abcab, b 7→ acabcb, c 7→ acbcacb

is square-free. An important theorem due to Bean, Ehrenfeucht and McNulty (1979)
describes square-free morphisms.

Theorem. Let α : A∗ → B∗ be a morphism satisfying

(1) α(A) 6= {ε},
(2) for every square-free word w of the length at most 3 is α(w) square-free,
(3) for all a, b ∈ A no α(a) is a proper factor of α(b).

Then α is a square-free morphism.
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