
Math match Good Water 2010

Solutions

Problem 1. (Incircles) (Mathematical Reflections 2010, (5)) The incircle of triangle ABC touches
sides BC,CA,AB at D,E, F , respectively. Let K be a point on side BC and let M be the point on the
line segment AK such that AM = AE = AF . Denote by L and N the incenters of triangles ABK and
ACK, respectively. Prove that K is the foot of the altitude from A if and only if DLMN is a square.

Solution. Assume first that DLMN is a square. Note that KL and KN bisect angles AKC and AKB
so ∠LKN = 90◦ = ∠LDN and K lies on the circumcircle of DLMN . This implies ∠MKD = ∠MLD =
90◦ and AK is indeed an altitude in △ABC.
Now assume K is the foot of the altitude. Denote by P,Q,R the points where the incircle of ABK

touches KB,AK,BA, respectively and denote by X,Y, Z the points where ACK touches the sides
KC,CA,AK.
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Note that KZNX and KPLQ are squares. We use equal tangents to get

XD − PD = EY − FR = AY −AR = AZ −AQ = KQ−KZ = KP −KX,

which implies XK = DP or XN = DP . Similarly we can show that XD = LP and this gives us
△NXD ∼= △DPL (SAS) and so

∠LDN = 180◦ − ∠LDP − ∠NDX = 180◦ − ∠LDP − ∠DLP = 90◦

and △DNL is right and isosceles.
Now as N lies on the bisector of CAK and AM = AE, the quadrilateral AENM is a kite and we

have NM = NE. Similarly N lies on bisector of △ACB and CE = CD so we get ND = NE = NM .
Analogous argument shows LM = LD implying the desired result.

Problem 2. (Polynomials)(Czech and Slovak 2001) Find all polynomials P such that

P (x)2 + P (−x) = P (x2) + P (x)

holds for every x ∈ R.

Solution. Adding P (−x) to both sides of the equation we make the right handside an even function.
Hence the left handside is also an even function. Rewriting this we get

P (x)2 + 2P (−x) = P (−x)2 + 2P (x) ⇔ (P (x)− P (−x)) (P (x) + P (−x)− 2) = 0.

So in one case we obtain P (x) = P (−x) which compared with the original equation gives P (x)2 =
P (x2). The second case is P (x) +P (−x) = 2 or Q(x) = −Q(−x) where Q(x) = P (x)− 1. Plugging this
in the original equation yields Q(x)2 = Q(x2).
Either way we need to find all polynomials satisfying R(x2) = R(x)2. Obviously R(x) ≡ 0, 1 are the

only constant solutions so from now on we may assume R is nonconstant. Let

R(x) = axn + bxk + S(x)
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for some k, n ∈ N0, n > k, a 6= 0 and some polynomial S(x) of degree less than k. Assume b 6= 0. Now
equating coefficients of xn+k we obtain 2ab = 0, which is a contradiction so the only polynomials with
the desired property are xk with k ∈ N0.
Putting all this together we may conclude that P (x) must be of one of the following forms: x2, x4, . . . ,

x+ 1, x3 + 1, x5 + 1 . . . and the constant polynomials 0, 1. All these polynomials are indeed solutions so
we are done.

Problem 3. (Set)(China MO training 1988) Determine the smallest value of the natural number n > 3
with the property that whenever the set Sn = 3, 4, ..., n is partitioned into the union of two subsets, at
least one of the subsets contains three numbers a, b and c (not necessarily distinct) such that ab = c.

Solution. We first show that 35 = 243 has the property, then we will show it is the least solution.
Suppose S243 is partitioned into two subsets X1, X2. Without loss of generality, let 3 be in X1. If

32 = 9 is in X1, then we are done. Otherwise, 9 is in X2. If 9
2 = 81 is in X2, then we are done.

Otherwise, 81 is in X1. If 81/3 = 27 is in X1, then we are done. Otherwise, 27 is in X2. Finally, either
3 · 81 = 243 is in X1 or 9 · 27 = 243 is in X2. In either case we are done.
To show 243 is the smallest, we will show that S242 can be partitioned into two subsets, each of which

does not contain products of its elements. It is easy to see that X1 = {9, 10, . . . 80} and X2 = S242 \X1
work so we are done.

Problem 4. (Pedal triangle)(Mathematical Reflections 2010 (5)) Let P be a point inside triangle
ABC and let da, db, dc be the distances from point P to the sides of the triangle. Prove that

K

dadbdc
≥ s

2Rr

where K is the area of the pedal triangle of P and s,R, r are the semiperimeter, circumradius, and
inradius of triangle ABC.

Solution. Denote by X,Y, Z the projections of P onto the sides BC,CA,AB, respectively. First we
note that K = K[PXY ] +K[PY Z] +K[PZX] so we can write

2K = dadb sin γ + dbdc sinα+ dcda sinβ.

Plugging in and using the law of sines we get

2 · LHS =
sinα

da
+
sinβ

db
+
sin γ

dc
=
1

2R
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.

Next we observe that K[ABC] = K[ABP ] +K[BCP ] +K[CAP ] and this yields

ada + bdb + cdc = 2K[ABC] = 2rs.

Finally we use the Cauchy inequality to get

LHS =
1

4R

(
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)

≥ s2

R(ada + bdb + cdc)
=

s

2Rr
,

which concludes the proof.

Problem 5. (Table)(Russia 1995) Is it possible to fill in the cells of a 9×9 table with positive integers
ranging from 1 to 81 in such a way that the sum of the elements of every 3× 3 square is the same?
Solution. Place 0, 1, 2, 3, 4, 5, 6, 7, 8 on the first, fourth and seventh rows. Place 3, 4, 5, 6, 7, 8, 0, 1, 2 on
the second, fifth and eigth rows. Place 6, 7, 8, 0, 1, 2, 3, 4, 5 on the third, sixth and ninth rows. Then
every 3 × 3 square has sum 36. Consider this table and its 90◦ rotation. For each cell, fill it with the
number 9a+ b+ 1, where a is the number in the cell originally and b is the number in the cell after the
table is rotated by 90◦. By inspection, 1 to 81 appears exactly once each and every 3×3 square has sum
9× 36 + 36 + 9 = 369.
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Problem 6. (Square)(1969 Kürschak Eötvos Hungary) Let n be a positive integer. Show that if

2 + 2
√

28n2 + 1

is an integer, then it is a square.

Solution. If 2 + 2
√
28n2 + 1 = m, an integer, then 4(28n2 + 1) = (m − 2)2. This implies m is even,

say m = 2k. So 28n2 = k2 − 2k. This implies k is even, say k = 2j. Then 7n2 = j(j − 1). Since
gcd(j, j − 1) = 1, either j = 7x2, j − 1 = y2 or j = x2, j − 1 = 7y2. In the former case, we get −1 ≡ y2

(mod 7), which is impossible. In the latter case, m = 2k = 4j = 4x2 is a square.


