Show that xyz/(x3 + y3 + xyz) + xyz/(y3 + z3 + xyz) + xyz/(z3 + x3 + xyz) ≤ 1 for all real positive x, y, z.
Solution
For positive x, y, x ≥ y iff x2 ≥ y2, so (x - y)(x2 - y2) ≥ 0, or x3 + y3 ≥ xy(x + y). Hence x3 + y3 + xyz ≥ xy(x + y + z) and so xyz/(x3 + y3 + xyz) ≤ z/(x + y + z). Adding the two similar equations gives the required inequality.
© John Scholes
jscholes@kalva.demon.co.uk
11 May 2002