Show that the five roots of the quintic a5x5 + a4x4 + a3x3 + a2x2 + a1x + a0 = 0 are not all real if 2a42 < 5a5a3.
Solution
Let the roots be ri. If the condition holds, then 2 ∑ ri < 5 ∑ rirj. Expanding, 2 ∑ ri2 + 4 ∑ rirj < 5 ∑ rirj, or 2 ∑ ri2 < ∑ rirj. But if ri and rj are real we have we have 2rirj ≤ ri2 + rj2. So if all the roots are real, adding the 10 similar equations gives 2 ∑ rirj ≤ 4 ∑ ri2. Contradiction. Hence not all the roots are real.
© John Scholes
jscholes@kalva.demon.co.uk
24 Aug 2002