Define the numbers c(n, k) for k = 0, 1, 2, ... , n by c(n, 0) = c(n, n) = 1, c(n+1, k) = 2kc(n, k) + c(n, k-1). Show that c(n, k) = c(n-k, k).
Solution
The first few numbers are:
n=0 1 n=1 1 1 n=2 1 3 1 n=3 1 7 7 1 n=4 1 15 35 15 1 n=5 1 31 155 155 31 1Let f(n) = (2 - 1)(22 - 1)(23 - 1) ... (2n - 1) for n > 0 and f(0) = 1. We show that c(n, k) = f(n)/( f(k) f(n-k) ). Put b(n, k) = f(n)/( f(k) f(n-k) ). Then b(n, 0) = b(n, n) = 1. Also 2kb(n, k ) + b(n, k-1) = f(n)/( f(k) f(n+1-k) ) x (2k(2n+1-k - 1) + (2k - 1) ) = f(n)/( f(k) f(n+1-k) ) x (2n+1 - 1) = f(n+1)/( f(k) f(n+1-k) ) = b(n+1, k). So b(n, k) satisfies the same recurrence relation and initial conditions as c(n, k). So a simple induction shows that they are the same.
© John Scholes
jscholes@kalva.demon.co.uk
30 Aug 2002