38th IMO 1997 shortlist

------
 
 
Problem 19

Let x1 ≥ x2 ≥ x3 ... ≥ xn+1 = 0. Show that √(x1 + x2 + ... + xn) ≤ (√x1 - √x2) + (√2) (√x2 - √x3) + ... + (√n) (√xn - √xn+1).

 

Solution

Put yk = √xk - √xk+1. Then (yk + yk+1 + ... + yn)2 = xk. Hence lhs2 = x1 + x2 + ... + xn = ∑ kyk2 + 2 ∑1≤h<k≤n hyhyk.

rhs = ∑ (√k) yk, so rhs2 = ∑kyk2 + 2 ∑1≤h<k≤n √(hk) ykyl. The result follows since h ≤ √(hk) for h < k.

 


 

38th IMO shortlist 1997

© John Scholes
jscholes@kalva.demon.co.uk
2 Dec 2003
Last corrected/updated 2 Dec 2003