n > 2. x1, x2, ... , xn are real numbers such that 2 ≤ xi <= 3. Show that (x12 + x22 - x32)/(x1 + x2 - x3) + (x22 + x32 - x42)/(x2 + x3 - x4) + ... + (xn-12 + xn2 - x12)/(xn-1 + xn - x1) + (xn2 + x12 - x22)/(xn + x1 - x2) ≤ 2(x1 + x2 + ... + xn) - 2n.
Solution
The ith term on the lhs is (xi2 + xi+12 - xi+22)/(xi + xi+1 - xi+2) (with cyclic subscripts). We can write this as (xi + xi+1 + xi+2) - 2xixi+1/(xi + xi+1 - xi+2). Now (xi - 2)(xi+1 - 2) ≥ 0, so -2xixi+1 ≤ -4(xi + xi+1 - 2) = -4( (xi + xi+1 - xi+2) + (xi+2 - 2) ). Hence the ith term ≤ (xi + xi+1 + xi+2) - 4(1 + (xi+2 - 2)/(xi + xi+1 - xi+2) ). But the constraints on xi imply that (xi + xi+1 - xi+2) and (xi+2 - 2) are positive and (xi + xi+1 - xi+2) ≤ 4. So the ith term <= (xi + xi+1 + xi+2) - 4(1 + (xi+2 - 2)/4) = xi + xi+1 - 2. Hence lhs ≤ 2s - 2n.
© John Scholes
jscholes@kalva.demon.co.uk
4 Sep 2002