|
1. Show that there is a finite set of points in the plane such that for any point P in the set we can find 1993 points in the set a distance 1 from P.
|
|
2. ABC is a triangle with circumradius R and inradius r. If p is the inradius of the orthic triangle, show that p/R ≤ 1 - (1/3) (1 + r/R)2). [The orthic triangle has as vertices the feet of the altitudes of ABC.]
|
|
3. The triangle ABC has incenter I. A circle lies inside the circumcircle and touches it. It also touches the sides CA, BC at D, E respectively. Show that I is the midpoint of DE.
|
|
4. ABC is a triangle. D and E are points on the side BC such that ∠BAD = ∠CAE. The incircles of ABD and ACE touch BC at M and N respectively. Show that 1/MB + 1/MD = 1/NC + 1/NE.
|
7. a > 0 and b, c are integers such that ac - b2 is a square-free positive integer P. [For example P could be 3·5, but not 325.] Let f(n) be the number of pairs of integers d, e such that ad2 + 2bde + ce2= n. Show that f(n) is finite and that f(n) = f(Pkn) for every positive integer k.
|
8. Define the sequence a1, a2, a3, ... by a1 = 1, an = an-1 - n if an-1 > n, an-1 + n if an-1 ≤ n. Let S be the set of n such that an = 1993. Show that S is infinite. Find the smallest member of S. If the element of S are written in ascending order show that the ratio of consecutive terms tends to 3.
|
9. Show that the set of positive rationals can be partitioned into three disjoint sets A, B, C such that BA = B, BB = C and BC = A, where HK denotes the set {hk: h is in H and k is in K}. Show that all positive rational cubes must lie in A. Find such a partition with the additional property that for each of the sets {1, 2}, {2, 3}, {3, 4}, ... {34, 35} at least one member is not in A.
|
10. A positive integer n has property P if, for all a, n2 divides an - 1 whenever n divides an - 1. Show that every prime number has property P. Show that infinitely many other numbers have property P.
|
12. Let k ≤ n be positive integers. Let S be any set of n distinct real numbers. Let T be the set of all sums of k distinct elements of S. Show that T has at least k(n - k) + 1 distinct elements.
|
13. If m and n are relatively prime positive integers, denote the pair (m, n) by s and define f(s) to be the pair (k, m+n-k), where k is the largest odd integer dividing n. Show that k and m+n-k are relatively prime. Show that f(f( ... f(s)...)) = s where f is iterated t times for some t ≤ (m + n + 1)/4. Show that if m + n is prime and does not divide 2h - 1 for h = 1, 2, ... , m+n-2, then the smallest t is [(m+n-1)/4].
|
14. The triangle ABC has side lengths BC = a, CA = b, AB = c, as usual. Points D, E, F on the sides BC, CA, AB respectively are such that DEF is an equilateral triangle. Show that DE √(a2 + b2 + c2 + k 4√3) ≥ k 2√2, where k is the area of ABC.
|
16. A is an n-tuple of non-negative integers (a1, a2, ... , an) such that ai ≤ i-1. Given any such n-tuple, we define the successor A' = (b1, ... , bn), where b1 = 0, bi+1 is the number of earlier members of A which are at least ai. Let Ak be the sequence defined by A0 = A, Ak+1 is the successor of Ak. Show that Ak+2 = Ak for some k.
|
18. Let Sn be the number of sequences of n 0s and 1s such that the sequence does not contain six consecutive identical blocks of numbers. [For example, 1000100100100100100110 is not allowed because it has six consecutive blocks 001.] Show that Sn tends to infinity.
|
19. b > 1, a and n are positive integers such that bn - 1 divides a. Show that in base b, the number a has at least n non-zero digits.
|
20. The n > 1 real numbers x1, x2, ... , xn satisfy 0 ≤ x1 + ... + xn ≤ n. Show that there are integers ki with sum 0 such that 1 - n ≤ xi + nki ≤ n for each i.
|
21. A circle S bisects a circle S' if it cuts S' at opposite ends of a diameter. SA, SB, SC are circles with distinct centers A, B, C (respectively). Show that A, B, C are collinear iff there is no unique circle S which bisects each of SA, SB, SC. Show that if there is more than one circle S which bisects each of SA, SB, SC, then all such circles pass through two fixed points. Find these points.
|
23. Show that for any finite set S of distinct positive integers, we can find a set T ⊇ S such that every member of T divides the sum of all the members of T.
|
|
24. Show that a/(b + 2c + 3d) + b/(c + 2d + 3a) + c/(d + 2a + 3b) + d/(a + 2b + 3c) ≥ 2/3 for any positive reals.
|
|
25. a is a real number such that |a| > 1. Solve the equations:
x12 = ax2 + 1
x22 = ax3 + 1
...
x9992 = ax1000 + 1
x10002 = ax1 + 1.
|
26. a, b, c, d are non-negative reals with sum 1. Show that abc + bcd + cda + dab ≤ 1/27 + 176abcd/27.
|
|
Note: Problems 5, 6, 11, 15, 17 and 22 were used in the Olympiad and are not shown here.
|
|