Russian 1999

------
 
 
Problem 6

Let {x} denote the fractional part of x. Show that {√1} + {√2} + {√3} + ... + {√(n2)} ≤ (n2 - 1)/2.

 

Solution

For i = 1, 2, ... , 2n we have {√(n2+i) } = √(n2+i) - n < (n+i/2n) - n = i/2n. So {√(n2+1) } + {√(n2+2) } + ... + {√(n2+2n+1) } = {√(n2+1) } + {√(n2+2) } + ... + {√(n2+2n) } < (1 + 2 + ... + 2n)/2n = (2n+1)/2. Hence {√1} + {√2} + {√3} + ... + {√(n2)} ≤ 3/2 + 5/2 + ... + (2n-1)/2 = (n-1)(2n+2)/2.

 


 

Russian 1999

© John Scholes
jscholes@kalva.demon.co.uk
4 March 2004
Last corrected/updated 4 Mar 04