Russian 2002

------
 
 
Problem 16

Show that √x + √y + √z ≥ xy + yz + zx for positive reals x, y, z with sum 3.

 

Solution

x2 + √x + √x ≥ 3x by AM/GM. Adding similar inequalities for y, z, we get x2 + y2 + z2 + 2(√x + √y + √z) ≥ 3(x + y + z) = (x + y + z)2 = x2 + y2 + z2 + 2(xy + yz + zx).

Thanks to Suat Namli

 


 

Russian 2002

© John Scholes
jscholes@kalva.demon.co.uk
31 December 2003
Last corrected/updated 31 Dec 03