Russian 2001

------
 
 
Problem 12

x3 + ax2 + bx + c has three distinct real roots, but (x2 + x + 2001)3 + a(x2 + x + 2001)2 + b(x2 + x + 2001) + c has no real roots. Show that 20013 + a 20012 + b 2001 + c > 1/64.

 

Solution

We can write x2 + x + 2001 = (x + 1/2)2 + 2000 - 1/4, so it takes any value ≥ 2000 - 1/4. Hence the roots of x3 + ax2 + bx + c must all be < 2000 - 1/4. Suppose the roots are p, q, r. We have p, q, r < 2000 - 1/4, hence 2000-p > 1/4. Similarly, 2000-q > 1/4 and 2000-r > 1/4. Multiplying we get 20013 + a 20012 + b 2001 + c > 1/64.

Thanks to Suat Namli

 


 

Russian 2001

© John Scholes
jscholes@kalva.demon.co.uk
7 February 2004
Last corrected/updated 7 Feb 04