Find [1/3] + [2/3] + [22/3] + [23/3] + ... + [21000/3].
Answer
(2/3)(21000-1)-500
Solution
Let f(n) = [2n/3]. Note that f(0) = f(1) = 0. We have 2n = (3-1)n = (-1)n mod 3, so if n is even, then 2n/3 = f(n) + 1/3 and hence 2n+1/3 = 2f(n) + 2/3. So f(n+1) = 2f(n). Similarly, if n is odd, f(n+1) = 2f(n) + 1. Thus f(2n) = 2f(2n-1)+1 = 4f(2n-2)+1. Put un = f(2n) + 1/3, then un = 4un-1. But u1 = 4/3, so un = 4n/3.
Hence u1 + u2 + ... + un = (4/3)(1 + ... + 4n-1) = (4/9)(4n-1). So f(2) + f(4) + ... + f(2n) = (4/9)(4n-1) - n/3. We have f(2n+1) = f(2n), so f(3) + f(5) + ... + f(2n-1) = (8/9)(4n-1-1) - (2/3)(n-1). Hence f(2) + f(3) + ... + f(2n) = (2/3)(4n-1) - n.
Thanks to Suat Namli
© John Scholes
jscholes@kalva.demon.co.uk
7 February 2004
Last corrected/updated 7 Feb 04