Let aij = i2j/(3i(j 3i + i 3j)). Find ∑ aij where the sum is taken over all pairs of integers (i, j) with i, j > 0.
Solution
Let bi = i/3i, then aij = bi2bj(bi + bj). Let the sum be k. Then k = ∑ aij = 1/2 ∑ (aij + aji) = 1/2 ∑ bibj. We have the familiar 1 + 2x + 3x2 + ... = 1/(1 - x)2, so x + 2x2 + 3x3 + ... = x/(1 - x)2, and hence ∑ bi = 1/3 (2/3)-2 = 3/4. So k = 1/2 (3/4)2 = 9/32.
© John Scholes
jscholes@kalva.demon.co.uk
14 Dec 1999