Putnam 1994

------
 
 
Problem A1

an is a sequence of positive reals satisfying an ≤ a2n + a2n+1 for all n. Prove that ∑ an diverges.

 

Solution

Trivial.

∑ an = a1 + (a2 + a3) + (a4 + a5 + a6 + a7) + ... and each bracket has sum at least a1 > 0.

 


 

Putnam 1994

© John Scholes
jscholes@kalva.demon.co.uk
12 Dec 1998