50th Putnam 1989

------
 
 
Problem A3

Prove that all the roots of 11z10 + 10i z9 + 10i z - 11 = 0 have unit modulus.

 

Solution

Note that z9 = (11 - 10iz)/(11z + 10i). But |11 - 10iz|2 = (121 + 100|z|2) + 220 Im z, and |11z - 10iz|2 = (100 + 121|z|2) + 220 Im z. In other words, if |z9| = N/D, then N - D = 21(1 - |z|2). So if |z| > 1, then N < D and hence |z9| < 1. Similarly if |z| < 1, then |z9| > 1. A contradiction in both cases. Hence |z| = 1.

 


 

50th Putnam 1989

© John Scholes
jscholes@kalva.demon.co.uk
1 Jan 2001