48th Putnam 1987

------
 
 
Problem B4

Define the sequences xi and yi as follows. Let (x1, y1) = (0.8, 0.6) and let (xn+1, yn+1) = (xncos yn - ynsin yn, xnsin yn + yn cos yn) for n ≥ 1. Find limn→∞ xn and limn→∞ yn.

 

Solution

Put y0 = sin-10.6. Then the relations give immediately xn+1 = cos(y0 + y1 + ... + yn), yn+1 = sin(y0 + y1 + ... + yn).

Since sin x < x for x > 0, we have sin x < π - x for 0 < x < π. Hence y0 + y1 + ... + yn < π implies y0 + y1 + ... + yn+1 < π. So all yn are positive. Hence ∑ yn is monotone increasing and bounded above. So it converges. Hence yn → 0. But that implies that ∑ yn → π, and hence xn → -1.

 


 

48th Putnam 1987

© John Scholes
jscholes@kalva.demon.co.uk
7 Jan 2001