1st Putnam 1938

------
 
 
Problem A5

(1)   Find limx->inf x2/ex.

(2)   Find limk->0 1/k  ∫0k   (1 + sin 2x)1/x dx.

 

Solution

(1) Let f(x) = x3e-x. Then f '(x) = (3x2 - x3) e-x < 0 for x > 3. Hence f(x) < f(3) for x > 3, so x2 e-x < f(3)/x for x > 3. Hence x2 e-x tends to zero.

(2) We use L'Hôpital's rule lim f(x)/g(x) = lim f '(x)/g'(x). Applied to the expression given it gives lim (1 + sin 2x)1/x. Write (1 + sin 2x)1/x = exp( 1/x ln(1 + sin 2x) ). So apply the rule again to 1/x ln( 1 + sin 2x) to get 2 cos 2x/(1 + sin 2x) which tends to 2. Hence (1 + sin 2x)1/x tends to e2 and so does the original expression.

 


 

1st Putnam 1938

© John Scholes
jscholes@kalva.demon.co.uk
5 Mar 2002