
1. Let pn(k) be the number of permutations of the set {1, 2, 3, ... , n} which have exactly k fixed points. Prove ∑0n (k pn(k) ) = n!.
First Solution
We show first that the number of permutations of n objects with no fixed points is n!(1/0! - 1/1! + 1/2! - ... + (-1)n/n!). This follows immediately from the law of inclusion and exclusion: let Ni be the number which fix i, Nij the number which fix i and j, and so on. Then N0, the number with no fixed points, is n! - all Ni + all Nij - ... + (-1)nN1...n. But Ni = (n-1)!, Nij = (n-2)! and so on. So N0 = n! ( 1 - 1/1! + ... + (-1)r(n-r)!/(r! (n-r)!) + ... + (-1)n/n!) = n! (1/0! - 1/1! + ... + (-1)n/n!).
Hence the number of permutations of n objects with exactly r fixed points = no. of ways of choosing the r fixed points x no. of perms of the remaining n - r points with no fixed points = n!/(r! (n-r)!) x (n-r)! (1/0! - 1/1! + ... + (-1)n-r/(n-r)! ). Thus we wish to prove that the sum from r = 1 to n of 1/(r-1)! (1/0! - 1/1! + ... + (-1)n-r/(n-r)! ) is 1. We use induction on n. It is true for n = 1. Suppose it is true for n. Then the sum for n+1 less the sum for n is: 1/0! (-1)n/n! + 1/1! (-1)n-1/(n-1)! + ... + 1/n! 1/0! = 1/n! (1 - 1)n = 0. Hence it is true for n + 1, and hence for all n.
Comment
This is a plodding solution. If you happen to know the result for no fixed points (which many people do), then it is essentially a routine induction.
Second solution
Count all pairs (x, s) where s is a permutation with x a fixed point of x. Clearly, if we fix x, then there are (n-1)! possible permutations s. So the total count is n!. But if we count the number of permutations s with exactly k fixed points, then we get the sum in the question.
Comment
This much more elegant solution is due to Gerhard Wöginger (email 24 Aug 99).
![]()
Solutions are also available in István Reiman, International Mathematical Olympiad 1959-1999, ISBN 189-8855-48-X.
© John Scholes
jscholes@kalva.demon.co.uk
30 Nov 1998