IMO 1985

------
 
 
Problem A3

For any polynomial P(x) = a0 + a1x + ... + akxk with integer coefficients, the number of odd coefficients is denoted by o(P). For i = 0, 1, 2, ... let Qi(x) = (1 + x)i. Prove that if i1, i2, ... , in are integers satisfying 0 ≤ i1 < i2 < ... < in, then:

    o(Qi1 + Qi2 + ... + Qin) ≥ o(Qi1).

 

Solution

If i is a power of 2, then all coefficients of Qi are even except the first and last. [There are various ways to prove this. Let iCr denote the rth coefficient, so iCr = i!/(r!(i-r)!). Suppose 0 < r < i. Then iCr = i-1Cr-1 i/r, but i-1Cr-1 is an integer and i is divisible by a higher power of 2 than r, hence iCr is even.]

Let Q = Qi1 + ... + Qin. We use induction on in. If in = 1, then we must have n = 2, i1 = 0, and i2 = 1, so Q = 2 + x, which has the same number of odd coefficients as Qi1 = 1. So suppose it is true for smaller values of in. Take m a power of 2 so that m ≤ in < 2m. We consider two cases i1 ≥ m and i1 < m.

Consider first i1 ≥ m. Then Qi1 = (1 + x)mA, Q = (1 + x)mB, where A and B have degree less than m. Moreover, A and B are of the same form as Qi1 and Q, (all the ijs are reduced by m, so we have o(A) ≤ o(B) by induction. Also o(Qi1) = o((1 + x)mA) = o(A + xmA) = 2o(A) ≤ 2o(B) = o(B + xmB) = o((1 + x)mB) = o(Q), which establishes the result for in.

It remains to consider the case i1 < m. Take r so that ir < m, ir+1 > m. Set A = Qi1 + ... + Qir, (1 + x)mB = Qir+1 + ... + Qin, so that A and B have degree < m. Then o(Q) = o(A + (1 + x)mB) = o(A + B + xmB) = o(A + B) + o(B). Now o(A - B) + o(B) >= o(A - B + B) = o(A), because a coefficient of A is only odd if just one of the corresponding coefficients of A - B and B is odd. But o(A - B) = o(A + B), because corresponding coefficients of A - B and A + B are either equal or of the same parity. Hence o(A + B) + o(B) ≥ o(A). But o(A) ≥ o(Qii) by induction. So we have established the result for in.  


Solutions are also available in     Murray S Klamkin, International Mathematical Olympiads 1978-1985, MAA 1986, and in   István Reiman, International Mathematical Olympiad 1959-1999, ISBN 189-8855-48-X.

 

26th IMO 1985

© John Scholes
jscholes@kalva.demon.co.uk
22 Oct 1998