IMO 1968

------
 
 
Problem B3

For every natural number n evaluate the sum

    [(n+1)/2] + [(n+2)/4] + [(n+4)/8] + ... + [(n+2k)/2k+1] + ... , where [x] denotes the greatest integer ≤ x.

 

Solution

For any real x we have [x] = [x/2] + [(x+1]/2]. For if x = 2n + 1 + k, where n is an integer and 0 ≤ k < 1, then lhs = 2n + 1, and rhs = n + n + 1. Similarly, if x = 2n + k.

Hence for any integer n, we have: [n/2k] - [n/2k+1] = [(n/2k + 1)/2] = [(n + 2k)/2k+1]. Hence summing over k, and using the fact that n < 2k for sufficiently large k, so that [n/2k ] = 0, we have: n = [(n + 1)/2] + [(n + 2)/4] + [(n + 4)/8] + ... .

 


Solutions are also available in:   Samuel L Greitzer, International Mathematical Olympiads 1959-1977, MAA 1978, and in   István Reiman, International Mathematical Olympiad 1959-1999, ISBN 189-8855-48-X.

 

10th IMO 1968

© John Scholes
jscholes@kalva.demon.co.uk
3 Oct 1998
Last corrected/updated 3 Oct 1998