IMO 1965

------

Problem A2

The coefficients aij of the following equations

        a11x1 + a12 x2+ a13 x3 = 0
        a21x1 + a22x2 + a23x3 = 0
        a31x1 + a32x2 + a33x3 = 0

satisfy the following: (a) a11, a22, a33 are positive, (b) other aij are negative, (c) the sum of the coefficients in each equation is positive. Prove that the only solution is x1 = x2 = x3 = 0.

 

Solution

The slog solution is to multiply out the determinant and show it is non-zero. A slicker solution is to take the xi with the largest absolute value. Say |x1| ≥ |x2|, |x3|. Then looking at the first equation we have an immediate contradiction, since the first term has larger absolute value than the sum of the absolute values of the second two terms.


Solutions are also available in:   Samuel L Greitzer, International Mathematical Olympiads 1959-1977, MAA 1978, and in   István Reiman, International Mathematical Olympiad 1959-1999, ISBN 189-8855-48-X.

 

7th IMO 1965

© John Scholes
jscholes@kalva.demon.co.uk
27 Sep 1998
Last corrected/updated 26 Sep 2003