IMO 1964

------
 
 
Problem A1

(a)  Find all natural numbers n for which 7 divides 2n - 1.
(b)  Prove that there is no natural number n for which 7 divides 2n + 1.

 
Solution

23 = 1 (mod 7). Hence 23m = 1 (mod 7), 23m+1 = 2 (mod 7), and 23m+2 = 4 (mod 7). Hence we never have 7 dividing 2n + 1, and 7 divides 2n - 1 iff 3 divides n.

Solutions are also available in:   Samuel L Greitzer, International Mathematical Olympiads 1959-1977, MAA 1978, and in   István Reiman, International Mathematical Olympiad 1959-1999, ISBN 189-8855-48-X.

 
6th IMO 1964
 
© John Scholes
jscholes@kalva.demon.co.uk
25 Sep 1998
Last corrected/updated 24 Sep 2003