8th APMO 1996

------
 
 
Problem 4

For which n in the range 1 to 1996 is it possible to divide n married couples into exactly 17 single sex groups, so that the size of any two groups differs by at most one.

 

Solution

Answer: 9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 27, 28, 29, 30, 31, 32, 36, 37, 38, 39, 40, 45, 46, 47, 48, 54, 55, 56, 63, 64, 72.

If n = 17k, then the group size must be 2k. Hence no arrangement is possible, because one sex has at most 8 groups and 8.2k < n.

If 2n = 17k+h with 0 < h < 17, then the group size must be k or k+1. One sex has at most 8 groups, so 8(k+1) ≥ n. Hence 16k + 16 ≥ 17k + h, so 16 - h ≥ k (*). We also require that 9k ≤ n. Hence 18k < 2n = 17k + h, so k ≤ h (**). With (*) this implies that k ≤ 8. So n ≤ 75.

Each group has at least one person, so we certainly require n ≥ 9 and hence k ≥ 1. It is now easiest to enumerate. For k = 1, we can have h = 1, 3, ... 15, giving n = 9-16. For k = 2, we can have h = 2, 4, ... 14, giving n = 18-24. For k = 3, we can have h = 3, 5, ... 13, giving n = 27-32. For k = 4, we can have h = 4, 6, ... 12, giving n = 36-40. For k = 5 we can have h = 5, 7, 9, 11, giving n = 45-48. For k = 6, we can have h = 6, 8, 10, giving n = 54, 55, 56. For k = 7, we can have h = 7, 9, giving n = 63, 64. For k = 8, we can have h = 8, giving n = 72.

 


 

8th APMO 1996

© John Scholes
jscholes@kalva.demon.co.uk
11 Apr 2002