A triangle has sides a, b, c. Construct another triangle sides (-a + b + c)/2, (a - b + c)/2, (a + b - c)/2. For which triangles can this process be repeated arbitrarily many times?
Solution
Answer: equilateral.
We may ignore the factor 1/2, since clearly a triangle with sides x, y, z can be constructed iff a triangle with sides 2x, 2y, 2z can be constructed.
The advantage of considering the process as generating (-a + b + c), (a - b + c), (a + b - c) from a, b, c is that the sum of the sides remains unchanged at a + b + c, so we can focus on just one of the three sides. Thus we are looking at the sequence a, (a + b + c) - 2a, a + b + c - 2(-a + b + c), ... . Let d = 2a - b - c. We show that the process generates the sequence a, a - d, a + d, a - 3d, a + 5d, a - 11d, a + 21d, ... . Let the nth term be a + (-1)nand. We claim that an+1 = 2an + (-1)n. This is an easy induction, for we have a + (-1)n+1an+1d = a + b + c - 2(a + (-1)nand) and hence (-1)n+1an+1d = -d - 2(-1)nand, and hence an+1 = 2an + (-1)n. But this shows that an is unbounded. Hence if d is non-zero then the process ultimately generates a negative number. Thus a necessary condition for the process to generate triangles indefinitely is that 2a = b + c. Similarly, 2b = c + a is a necessary condition. But these two equations imply (subtracting) a = b and hence a = c. So a necessary condition is that the triangle is equilateral. But this is obviously also sufficient.
© John Scholes
jscholes@kalva.demon.co.uk
11 Apr 2002