Show that a graph with n vertices and k edges has at least k(4k - n2)/3n triangles.
Solution
Label the points 1, 2, ... , n and let point i have degree di (no. of edges). Then if i and j are joined they have at least di + dj - 2 other edges between them, and these edges join them to n - 2 other points. So there must be at least di + dj - n triangles which have i and j as two vertices. Hence the total number of triangles must be at least ∑edges ij (di + dj - n)/3. But ∑edges ij (di + dj) = ∑ di2, because each point i occurs in just di terms. Thus the total number of triangles is at least (∑ di2)/3 - nk/3. But ∑ di2 ≥ (∑ di) 2/n (a special case of Chebyshev's inequality) = 4k2/n. Hence result.
© John Scholes
jscholes@kalva.demon.co.uk
11 Apr 2002