ai are positive reals. s = a1 + ... + an. Prove that for any integer n > 1 we have (1 + a1) ... (1 + an) < 1 + s + s2/2! + ... + sn/n! .
Solution
We use induction on n. For n = 2 the rhs is 1 + a1 + a2 + a1a2 + (a12 + a22)/2 > lhs. Assume the result is true for n. We note that, by the binomial theorem, for s and t positive we have sm+1 + (m+1) t sm < (s + t)m+1, and hence sm+1/(m+1)! + t sm/m! < (s + t)m+1/(m+1)! . Summing from m = 1 to n+1 we get (s + t) + (s2/2! + t s/1!) + (s3/3! + t s2/2!) + ... + (sn+1/(n+1)! + t sn/n!) < (s + t) + (s + t)2/2! + ... + (s + t)n+1/(n+1)! . Adding 1 to each side gives that (1 + t)(1 + s + s2/2! + ... + sn/n!) < (1 + (s+t) + ... + (s+t)n+1/(n+1)! . Finally putting t = an+1 and using the the result for n gives the result for n+1.
© John Scholes
jscholes@kalva.demon.co.uk
11 Apr 2002