
Of Permutations

In this series, we shall deal with problems involving various arrangements, orderings and rankings.
All of these can be easily formalised using permutations.

A permutation π on a set A is a function π : A→ A that is bijective, i.e. it is

(1) surjective (or onto A), which means that for each y ∈ A, there exists x ∈ A such that
π(x) = y,

(2) injective, which means that if π(x) = π(y) for some x, y ∈ A, then x = y.

We denote the set of all permutations on the set A as SA. Specifically, for n ∈ N and A =
{1, 2, . . . , n}, we denote this set of permutations on A as Sn. We call the “permutation” π(x) = x
that leaves every element of A in place the identity permutation (or just identity), which we denote
idA or just id.

Sn contains exactly
n! = n · (n− 1) · · · 2 · 1

permutations — number 1 can be mapped to any number π(1) from among 1, 2, . . . , n, number 2
can then be mapped to any such number which is not π(1), number 3 can be mapped to any such
number which is not π(1) or π(2) etc.

We formulated what a permutation is on an arbitrary set A, but we will mainly work with finite
sets. In that case, it is easier to show that a given function acting on this finite A is a permutation,
as this theorem shows:

Theorem. Let A be a finite set of size n and let f : A → A be a function on A. Then, f is
injective if and only if f is surjective.

Proof. (=⇒) Because f is injective, every element of A is mapped to a different value, which
means that there are n different values in the form f(a), a ∈ A, each of them lying in the set A,
which has n elements. That means that among those f(a), a ∈ A, every element of A is represented.
In other words, for arbitrary y ∈ A, there must exist an x ∈ A such that f(x) = y.

(⇐=) If f was not injective, there would exist distinct x1, x2 ∈ A such that f(x1) = f(x2).
That would mean that there are at most (n− 1) different values f(a), a ∈ A, contrary to the fact
that f is surjective. �

A corollary of this theorem is that for a finite set A, every injective function A → A is a per-
mutation, and similarly, every surjective function A→ A is a permutation.

Because permutations are bijections, we may refer to their inverses — for π ∈ SA, there exists
a mapping π−1 such that π−1 maps b ∈ A to the unique element a ∈ A satisfying π(a) = b.
Because π is a bijection acting on A, π−1 is also a bijection defined on A, i.e. it is a permutation
again.

It also holds that the composition of permutations π, σ ∈ SA, defined by

(π ◦ σ)(a) = π(σ(a)), a ∈ A,

is a permutation. If we compose π with itself k ∈ N times, we write this composition as πk.
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Cycles

Suppose we have a permutation π on a finite set A and we choose an element a1 ∈ A. Then π

might map a1 to itself, or it can map it to another element a2 = π(a1). Next, a2 can be then
mapped to a1 or some other element a3 of A, but it cannot be mapped to a2, because π is injective
and a1 is already being mapped to a2.

More generally, suppose that a1, a2, . . . , ak are all distinct elements of A and it holds that
π(ai) = ai+1 for i ∈ {1, 2, . . . , k−1}. Suppose also that ak is mapped to an already visited element,
say a` for some ` ∈ {1, 2, . . . , k}— this has to eventually happen, because A is finite. Now, if ` ≥ 2,
then we would have π(ak) = a` and also π(a`−1) = a`. But ak 6= a`−1, so π would not be injective,
and thus not a permutation. This means that ` = 1 must happen and therefore π creates a cycle

a1 7→ a2 7→ · · · 7→ ak 7→ a1.

It can be the case that A also contains some other elements which are not part of this cycle. With
the same procedure, we can again choose some b1 ∈ A \ {a1, . . . , ak}, which will construct another
cycle — let us dispense with the arrows and just write the cycle as (b1 b2 . . . bm). Continuing like
this, we can decompose the permutation π into disjoint cycles as

π = (a11 a
1
2 . . . a

1
k1

)(a21 a
2
2 . . . a

2
k2

) . . . (am1 am2 . . . amkm
),

where the elements aji are all distinct — this notation lists all the individual cycles, (aj1 a
j
2 . . . a

j
kj

)

being the j-th cycle. Moreover, these cycles are uniquely determined for the given permutation.
Usually, we omit cycles of length 1 for simplicity.

As an example, the permutation π ∈ S6 which is given by π(1) = 4, π(2) = 2, π(3) = 6,
π(4) = 5, π(5) = 1 and π(6) = 3 is represented by the cycles

π = (1 4 5)(2)(3 6) = (1 4 5)(3 6)

(we omit the cycle (2) of length one). This gives us a better idea how the permutation behaves —
for example, we see that π6 = id (more generally, it is not hard to see that the smallest positive
exponent with this property is equal to the least common multiple of all the cycle lengths). We
can also immediately determine the inverse of π — we just have to reverse the order of elements
in individual cycles, so π−1 = (5 4 1)(6 3).

If π(a) = a for a ∈ A, we say that a is a fixed point of π. If π consists only of one cycle, it is
called cyclic. If π = (b a) ∈ SA, i.e. if π swaps a with b while leaving the remaining points fixed,
then we say that π is a transposition.

Counting Permuted Values

When several numbers are summed or multiplied together, it does not matter how we order these
numbers — 1 + 2 + 3 is the same as 2 + 1 + 3 or 3 + 1 + 2. Thus, if we have a permutation π on
a finite set of numbers A, it holds that1∑

a∈A
a =

∑
a∈A

π(a) and
∏
a∈A

a =
∏
a∈A

π(a).

This simple fact can serve as a surprisingly powerful tool, as we will now illustrate:

Theorem. (Fermat’s little theorem) Let p be a prime and a ∈ {1, 2, . . . , p− 1}. Then ap−1 ≡ 1
(mod p).

1∑ denotes the sum and
∏

the product.

2



Proof. Let A = {1, 2, . . . , p− 1} and π : A→ A defined as π(x) = (ax mod p). We claim that π
is injective — to that end, suppose that x, y ∈ A satisfy π(x) = π(y). Then ax ≡ ay (mod p), and
because a and p are coprime, it follows that x ≡ y (mod p). However, x and y are from A which
contains only numbers between 1 and p − 1, so x = y. We showed that π is injective, and so it
must be a permutation thanks to the finiteness of A.

Now, the product ∏
x∈A

π(x) = π(1) · π(2) · · ·π(p− 1)

must be equal to ∏
x∈A

x = 1 · 2 · · · (p− 1),

because both run over the whole A and π is a permutation, so every element of A appears exactly
once in each product, regardless of whether we multiply the values 1, 2, . . . , p − 1 in ascending
order or in the permuted order given by π.

Finally, we calculate∏
x∈A

x =
∏
x∈A

π(x) =
∏
x∈A

(ax mod p) ≡
∏
x∈A

ax = ap−1 ·
∏
x∈A

x (mod p),

and so 1 ≡ ap−1 (mod p) thanks to the fact that individual elements of A are coprime to p, hence
their product is also coprime to p. �
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