Arrangements

4™ AUTUMN SERIES DATE DUE: 6™ JANUARY 2025

Pozor, u této série prijimame pouze FeSeni napsana anglicky!

PROBLEM 1. (3 POINTS)
There are n pigs standing in a line. Among those, however, Matous, Matéj and Michal do not want
to stand next to each other!. Find the number of possible ways to arrange the pigs that satisfy this
condition.

PROBLEM 2. (3 POINTS)
Sylva found a clock that had its numbers rearranged. For each of the twelve neighbouring pairs of
numbers, she wrote down their sum. She then replaced each of these twelve sums with its remainder
when divided by 13. Finally, she summed the twelve remainders. What is the smallest value Sylva
could have obtained out of all possible arrangements?

PROBLEM 3. (3 POINTS)
Stepi is playing with a grid of 2024 x 2024 points. For every ordered triplet of distinct points (4, B, C)
of the grid, he measures? and writes down ZABC. What is the average of all the numbers Stepi
writes down?

PROBLEM 4. (5 POINTS)
Let n be a positive integer such that its base-10 representation contains each of the digits 0, 1, 2

and 3 at least once. Show that the digits of n can be permuted so that the new number? is divisible
by 7.

PROBLEM 5. (5 POINTS)
Vitek owns a deck of 2024 cards, each of which has one of four suites. Initially, the deck is sorted
in such a way that any four consecutive cards are of four different suites. Vitek then takes some
consecutive block of cards from the top of the deck, reverses its order and inserts it back somewhere
into the deck. Afterwards, Vitek separates the deck into quadruplets, consisting of the first through
fourth card, then fifth through eighth, etc. Show that each of these quadruplets contains cards of
four distinct suites.

PROBLEM 6. (5 POINTS)
Majda and Vasek are playing a game, in which Majda takes the first turn and then they alternate.
Initially, the numbers 2000, 1999, ..., 3, 2, 1 are written on a board in this order. During his

turn, Vasek can choose 1000 numbers and rearrange them as he wishes. Majda can, during her
turn, choose k numbers and rearrange them, where k is a fixed positive integer. Majda wins if the
numbers on the board are in the order 1, 2, 3, ..., 1999, 2000. What is the smallest k for which
Majda can always win (regardless of how Vasek plays) after a finite number of turns?

IMatous, Matéj and Michal are pigs.
20f the two angles determined by rays BA and BC, Stepi always measures the smaller one.
3We allow the new number to begin with zeroes.



PROBLEM 7. (5 POINTS)
Let p be an odd prime number and S, be the set of permutations of the set {1,2,...,p}. For any
m € Sp, define ®(7) as the number of multiples of p among the numbers

m(1), m(1) + m(2), m(1) +7(2) + -+ 7(p).

. 1
Find the value of — Z P(7).
" weSy

PROBLEM 8. (5 POINTS)
Matéj and Danik are standing in (not neccessarily the same) vertices of the complete graph on n
vertices.* Each edge of this graph has a price, which is a nonnegative real number that has to be
paid when moving along this edge, and each price is unique. Both Danik and Matéj make a journey
that visits each vertex exactly once, according to the following rules:

(1) Danik likes expensive things, so at each step, he moves along the edge which costs the
most among the ones leading to vertices he hasn’t visited yet.

(2) Matéj likes cheap things, so at each step, he moves along the edge which costs the least
among the ones leading to vertices he hasn’t visited yet.

Show that in the end, Danik’s total expenses are greater than or equal to Matéj’s expenses.

4To learn what a graph or a complete graph is, see this older introductory text:
kz/archive/42/uvod4p.pdf.
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Arrangements

4. PODZIMN{ SERIE VZOROVE RESENT{

Uloha 1.

There are n pigs standing in a line. Among those, however, Matous, Matéj and Michal do not want
to stand next to each other!. Find the number of possible ways to arrange the pigs that satisfy
this condition.

RESEN(:

There are n — 3 pigs whose placement in the line is not constrained in any way. Therefore, there
are (n — 3)! possible arrangements of these pigs. Then there are n — 2 slots where Mat&j, Michal,
and Matou$ may be inserted (n — 4 slots between some other two pigs and 2 slots at the ends of
the line). Since they do not want to stand next to each other, only one of them can be put in any
slot. Thus, we need to choose 3 out of these n — 2 slots, and then the remaining three pigs can be
arranged in 3! ways in these 3 chosen slots. So in total, the number of satisfactory ways of arranging
the pigs is (n — 3)!("g2)3!.

POZNAMKY:

Nemala ¢ast resitelit postupovala podobné jako vzorové feseni a primo spocitala validni usporadani
prasatek. Nékteri zvolili opacény postup a od vSech moznych usporadéani od¢itali ta, kterd nevyhovuji
zadani, jelikoz jsou v nich néjaka prasitka od M vedle sebe. Takové feSeni ale skryva nemalé uskali
v prekryvu pocitanych moznosti podle jednotlivych prasatek od M, se kterym se zvladla vyporadat
jen cast Fesiteld. (Klérka Grinerové)

Uloha 2.

Sylva found a clock that had its numbers rearranged. For each of the twelve neighbouring pairs of
numbers, she wrote down their sum. She then replaced each of these twelve sums with its remainder
when divided by 13. Finally, she summed the twelve remainders. What is the smallest value Sylva
could have obtained out of all possible arrangements?

RESEN(:

We start by showing that any obtained value v must be a multiple of 13. It is important to
remember the fact that (a mod n + b mod n) mod n = (a + b) mod n when n is prime. We add all
remainders together modulo 13. Using the aforementioned fact, what matters is how many times
each number appears in the remainders. Each number appears in exactly two different remainders.
Thus, we get 22;21 i mod 13 which is equal to 0. This means that every v is a multiple of 13.

Now, let us continue by showing that it cannot be 0. Consider 1. The only number satisfying
1+4+a mod 13 = 0 is a = 12. However, for v to be 0, every remainder in the sum must be 0. But 1 is

IMatous, Matéj and Michal are pigs.



part of two remainders. Lastly, we show that there exists an arrangement where v = 13. One such
arrangement is 1,12,2,11,3,10,4,9,5,8,6,7.

Therefore 13 is the best answer.

Uloha 3.

Stepi is playing with a grid of 2024 x 2024 points. For every ordered triplet of distinct points (A, B, C)
of the grid, he measures® and writes down ZABC. What is the average of all the numbers Stepi
writes down?

RESEN{:
Firstly, note that we are looking for an average. Let us denote by S the sum of all the angles and
by n their count — then the desired answer is %

Let us note that we are considering all the angles corresponding to ordered triplets of distinct
points in the grid. We will divide all of these triplets into groups of 6, with each group consisting
of the six permutations of some three points A, B, C. In other words, the angles <ABC, <BCA,
<CAB, <ACB, <CBA and <BAC form one group. Since the angles in a triangle always add up to
180°, it holds that <ABC 4+ <BCA+ <CAB = 180° and analogously <ACB+ <CBA+ <BAC =
180°. Therefore, the sum of angles in one group will be 180° - 2 = 360°. Since we have exactly n
angles contributing to S, there will be & groups in total. This means that S will equal % - 360°.

Now we just perform the following calculation to obtain:

s 1 .
E:S-f:(ﬁ~360>~

1
= (n-60°)- — =60°.
n 6 n

S|

With this trick, we have easily found the average to be 60°.

POzZNAMKY:

Témér vSechna feseni byla spravna a pouzila tentyz trik jako vzorak. (Lenka Poljakova)

20f the two angles determined by rays BA and BC, Stepi always measures the smaller one.
2



Uloha 4.

Let n be a positive integer such that its base-10 representation contains each of the digits 0, 1, 2
and 3 at least once. Show that the digits of n can be permuted so that the new number? is divisible
by 7.

RESENT:

Let us remove one of each of the digits 0, 1, 2, 3 from n and label the resulting number m. We will
then find a number n’ divisible by 7 in the form n’ = 10000m + p, where p will be some number
formed by a permutation of the digits 0, 1, 2, 3. Note that the digits of n can indeed be permuted
to get such an n’'.

Let r € {0,1,2,3,4,5,6} be the remainder of 10000m modulo 7. We determine p based on r.
For that, let us choose p as one of the numbers 0231, 1023, 2130, 0213, 0123, 1230, 0132. The
remainders of these numbers modulo 7 are 0, 1, 2, 3, 4, 5, 6 respectively. For r > 0, let us select p
so that its remainder is 7 — 7, and for r = 0, let us select p so that its remainder is 0.

For r = 0, we have

n' =10000m +p=0+0=0 (mod7),

whereas for » > 0 we have
n' =10000m +p=7+(7T—7r)=0 (mod 7).

Therefore, n’ is divisible by 7 in either case. As we mentioned before, the digits of n can be permuted
to form n’, hence n’ is the new number we were looking for.

POzZNAMKY:
Vicsina rieseni mala velmi podobny postup ako vzorové riesenie. (Michal ,, Misko“ Pecho)

Uloha 5.

Vitek owns a deck of 2024 cards, each of which has one of four suites. Initially, the deck is sorted
in such a way that any four consecutive cards are of four different suites. Vitek then takes some
consecutive block of cards from the top of the deck, reverses its order and inserts it back somewhere
into the deck. Afterwards, Vitek separates the deck into quadruplets, consisting of the first through
fourth card, then fifth through eighth, etc. Show that each of these quadruplets contains cards of
four distinct suites.

RESEN{:

We can represent different suits with numbers from one to four. When any four consecutive cards
are from different suits, the fifth card will be the same as first, the sixth the same as second and so
on. So we know that the original order of cards was WLOG 1, 2, 3,4, 1, 2, 3,4, 1, ... Then after
Vitek makes the changes, we can separate the deck into three parts: the unchanged beginning, the
reversed part and the unchanged end (if the cards are put in the beginning or in the end, we are
left with just two parts).

First, we take quadruplets from the beginning until there are k leftover cards, where k < 4.
We know that these quadruplets are each from different suit, because they are from the unchanged
part of the deck. Then we do the same thing from the end of the deck (for the same reason there
will be ¢ cards remaining, where ¢ < 4).

If we continue from the end, there are these ¢ cards, which will be the first £ cards from the
sequence 4, 3, 2, 1. Then, if there are enough reversed cards, we take first 4 — ¢ cards from them.
These cards are from the sequence 1, 2, 3, 4, because they are the first cards from the unchanged
deck but reversed. Therefore, these £ + (4 — ¢) = 4 cards are each from a different suit.

3We allow the new number to begin with zeroes.
3



If there are not enough cards in the reversed part of deck to do this, there must be only four
cards remaining in total (because k < 4 and there are less than four other cards) and because
number of cards from each suit is the same and we have removed an equal amount from each suit,
they must each be from different suit.

After that, we continue from the end and make quadruplets from the reversed cards until there
are only m of them, where m < 4. Now we have only four cards remaining (because m + k < 8),
and so the argument is the same as in the last paragraph. And with that we have proven, that each
quadruplet always contains cards from all suites.

POZNAMKY:
Protoze nevime, kam do balicku Vitek karty vlozil, tak musime pokryt vSechny mozné pripady.
Neéktefi fesitelé to ze zadani nepochopili a vkladdali karty pouze na nékterad specifickd mista. Zbyla
feSeni ale byla témér vSechna spravna.

(Lukés Trojan)

Uloha 6.
Majda and Vasek are playing a game, in which Majda takes the first turn and then they alternate.
Initially, the numbers 2000, 1999, ..., 3, 2, 1 are written on a board in this order. During his

turn, Vasek can choose 1000 numbers and rearrange them as he wishes. Majda can, during her
turn, choose k numbers and rearrange them, where k is a fixed positive integer. Majda wins if the
numbers on the board are in the order 1, 2, 3, ..., 1999, 2000. What is the smallest k for which
Majda can always win (regardless of how Vasek plays) after a finite number of turns?

RESEN(:

Let us observe: if one number is not in its place, at least one other number has to be in a wrong
spot. (If some k is at the position 7 # k, then ¢ also has to be in the wrong position.)

First of all, we prove that if k& < 1002, then Majda cannot win. If at the start of Majda’s turn
more than k numbers are at wrong positions, then she cannot get all of them to their correct
positions in one turn. Because of that, there are at least two numbers in wrong positions at the end
of her turn (this derives from the observation at the start). Therefore, Vasek can shuffle some 1000
numbers, so that after his turn there are at least 1002 numbers in a wrong spot. Thus we proved
that k has to be at least 1002.

Now we will present an algorithm for Majda that results in her winning the game when k = 1002.
The algorithm is simple: take the 1000 numbers which Vasek has shuffled, return them wherever
they were before Vasek shuffled them, and with the last two moves, pick a number not in its place
(if such a number exists) and move it to its place. Thus the number of correctly placed numbers
after her turn increases (compared to the aftermath of her previous turn) by at least one.

With this algorithm and k& = 1002, Majda can win in at most 2000 turns.

POZNAMKY:

Vétsinu feseni bylo mozné rozdélit do dvou skupin. Prvni méla pro k # 1001 stejny argument jako

vzorové feseni. Druha si ¢isla rozdélila na mensi rovno 1000 a vetsi nez 1000. Nasledné ukazali, ze

Vasek vzdy dokaze ve svém tahu navratit vSechna mensi ¢isla na pozice od 1001 dal a obracené.
(Petr Hladik)

Uloha 7.
Let p be an odd prime number and S, be the set of permutations of the set {1,2,...,p}. For any
w € Sp, define ®(7) as the number of multiples of p among the numbers

m(1), m(1) + m(2), w(1) +7(2) + -+ 7(p).

. 1
Find the value of—' Z P(7).
" weSy



RESEN(:
Let us first define a permutation shift. If we shift the permutation « € S, transforms into k € Z,
we denote the new permutation 7 € S, and define it as

T4k (i) =7(i) +k (mod p) keZie{l,2,...,p}.

For example, permutation (1, 2, 3) shifted by 2 is (1,2, 3)12 = (3,1, 2). It is pretty easy to see, that
(Tr) 1 = Ty (k1) 1-e. by shifting a permutation multiple times, we only get the same permutation
shifted by a different number. And since w1, = 710 = =, shifting one permutation by various
numbers can give us only p different permutations. These permutations 740, m41,...,7 (1) are
all different, because they all differ in the first element 7(1).

That said, it is obvious that the set of permutations S, can be divided into p-element subsets,
where each subset contains only permutations that are mutually shifted. Let us take one such
subset G C Sp and focus on computing the sum Y, ®(w). Let us define

n

sn(m) =Y (i) =m(1) + 7(2) + ...+ 7(n)

i=1

and an indicator function I, (7) = 1 if p divides s, (7) and 0 otherwise. Then ®(m) can be written
as a sum of these indicators. Then the order of summation can be changed. We know from earlier,
that our subset G can be written as G = {mx;k € Z} = {740,741, ., T4 (p_1)}, Where m € G is
one of its permutations. This can be used to express the second sum

P P p p—1
Yoo =3 Y @=3 3 @)= " Iu(rw)
n=1k=0

TeG TeGn=1 n=1reG

Proposition. For 0 < n < p, there is exactly one number among sn(74+0),Sn(m41),...,
Sn (7r+(p,1)) divisible by p. Or equivalently for every 0 < n < p it holds that Zz;é In(myr) = 1.

Proof. Let A = sp(m) (mod p). Then we can compute
n n
sn(mik) =Y 7n(i) = (n(i) + k) = su(r) + nk = A+ nk (mod p).
i=1 i=1

It is known and can be easily proven, that since n and p are coprime, each of the numbers nk
has different remainder modulo p. Thus also each of the numbers A + nk = s, (71 ) has different
remainder modulo p for every k € {0,1,... ,p — 1}. And since there are p such numbers and p
possible remainders, exactly one of these numbers s, (71)) has remainder 0 and is divisible by
p- O

We proved that the sum Zz;é I,(myk) = 1 for every n < p. Let us now solve the case of n = p.
The number s,(m) = >F_, 7() is actually a sum of all the numbers from 1 to p. Only their order
is different for different permutations

sp(m) = Zw(z) = Zz = plp+1) 1).

Because p is odd, ’%rl is an integer and sp(w) is an integer multiple of p. So I,(7) = 1 for every

7 € Sp. We can now compute the sum

p p—1 p—1 p—1
Z () = Z Z[n(ﬂ'Jrk): Zl+21p(ﬁ+k):p71+p:2p71.
TeG n=1k=0 n=1 k=0

5



At the beginning, we divided the permutations into subsets of size p. There are p! of all the
permutations, so the number of groups needs to be %!. Since the sum of ®() in each group is
2p — 1, we can compute the final result.

: q’(”):i' > Z‘I’(”)=i, > (2p71)=$%(2p71)=2p71.

p!

mESp P GCSp meG P GCSp : p
POzZNAMKY:
Témer vsechna odevzdand feseni byla spravne. (Ondra Trinkewitz)
Uloha 8.

Matéj and Danik are standing in (not neccessarily the same) vertices of the complete graph on n
vertices.* Each edge of this graph has a price, which is a nonnegative real number that has to be
paid when moving along this edge, and each price is unique. Both Danik and Matéj make a journey
that visits each vertex exactly once, according to the following rules:

(1) Danik likes expensive things, so at each step, he moves along the edge which costs the
most among the ones leading to vertices he hasn’t visited yet.

(2) Matéj likes cheap things, so at each step, he moves along the edge which costs the least
among the ones leading to vertices he hasn’t visited yet.

Show that in the end, Danik’s total expenses are greater than or equal to Matéj’s expenses.

SOLUTION INSPIRED BY VERCA MENSIKOVA:

Let us (without loss of generality) name the vertices of our complete graph 1, 2, ..., n so that in
each step Danik, who starts at vertex 1, moves from vertex i to vertex ¢ + 1. Matéj’s journey then
follows these vertices in some order. By {u,v} we will mean the edge between the vertices u and
v. Furthermore, we will denote the price of edge {u,v} by p(u,v).

We want to pair Danik’s and Matéj’s edges so that for each pair it holds that Danik’s edge is
more (or equally) expensive as Maté&j’s edge.

We will pair Matéj’s edges in order of his journey in the following way: Let us have an edge
in Matéj’s journey, going from vertex m to some other vertex. We will pair it with Danik’s edge
{d,d+ 1} where d is greatest possible such that d < m and the edge {d,d+ 1} has not been paired
yet.

Lemma. (which will be useful later in the solution) Consider that we want to pair Matéj’s edge
going from vertex m. If we have already used the edge {m,m + 1} in our pairing, we must have
also used all the edges {m +1,m +2}, {m +2,m+3}, ..., {n —1,n}.

Proof. We will proceed by induction. First, let’s remark that for m = n — 1 we have already used
the edge {n — 1,n} by the assumption of the lemma. Thus the base case of induction is done.
Now, let us suppose that the lemma holds for all £ > m. If we have already used the edge
{m, m + 1}, there must exist a vertex v > m, with whose edge we have paired that edge. By
the definition of the pairing, we know that the edges {m + 1,m + 2},...,{v — 1,v},{v,v + 1}
must have been paired before pairing the edge from v. By the inductive hypothesis we then
know that also the edges {v + 1,v + 2},...,{n — 1,n} have been already paired. Therefore all
edges {m + 1,m + 2},...,{n — 1,n} have been already paired before pairing the edge of v, which
concludes the proof. O

Let us now show that our pairing is indeed feasible. We will prove this by contradiction. Assume
we have Matéj’s edge {u, v} which can’t be paired with any of Danik’s edges. Then we know that the

4To learn what a graph or a complete graph is, see this older introductory text:
kz/archive/42/uvod4p.pdf.
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edge {u,u+ 1} has already been paired and by the lemma all the edges {u+1,u+2},...,{n—1,n}
too. And because we can’t pair Matéj’s edge {u, v}, all the edges {1,2},...,{u — 1,u} have been
paired too. Therefore we can see that all the edges have already been paired. We can’t pair the
same Matéj’s edge twice and the amount of Matéj’s and Danik’s edges is the same. Thus we must
have used all of Matéj’s edges, which is a contradiction with the edge {u, v} being unpaired.

Now it suffices to prove that for each pair Danik’s edge is at least as expensive as Matéj’s is. Let
us have Maté&j’s edge {u,v}. We will divide the possible pairings into two cases:

(1) The edge was paired with the edge {u,u + 1}. Because there are n — u vertices above
uw and only n — u — 1 edges above the edge {u,u + 1}, there must exist a vertex w (not
necessarily different from v) such that w > w, which Maté]j has not visited yet. Otherwise,
Matéj would have paired all the edges above {u — 1, u} with those vertices. So Matéj had
the opportunity to choose the edge {u,w}. Because w > w, Danik must have had the
opportunity to choose the edge {u,w}. That said and remembering that Maté&j chooses
the cheapest edge and Danik chooses the most expensive edge, we have the following
inequality:

p(u,v) < plu,w) < pu,u+1).

(2) The edge was paired with the edge {z,z + 1} for some = < u. Therefore Maté&j could
not have visited the vertex = yet (otherwise he would have already used this edge). So in
vertex u, Mat&j had the opportunity to choose the vertex = as his next (here z is also not
necessarily different from v). Also, Danik must have had the opportunity to choose the
vertex u instead of  + 1, when standing in z. From that we similarly get:

p(u,v) < plu,z) = p(z,u) < p(z,z + 1).

We now know that we can pair each Maté&j’s edge {u, v} with some Danik’s edge in such a way
that the Matéj’s edge is at most as expensive as Danik’s. Now if we sum it over all edges, we have
that Matéj’s total expenses are at most as great as Danik’s, which proves our problem.

POZNAMKY:

Z jedenacti statecnych, ktefi se s ulohou odhodlali prat, ji nékolik tspésné vytesilo. Mnohdy
pouzivali jiny postup nez ten ve vzorovém reSeni, kdy se snazili dokazat, ze pro libovolné x ma
Danik vic hran drazsich nez toto x, nez jich ma Maté&j. Bohuzel, néktefi feSitelé ne uplné fesili to,
ze nékteré hrany mohou byt nepouzitelné (protoze cestujici ve vrcholech, kam vedou, uz byl), nebo
se snazili dokdzat nepravdivé tvrzeni, ze v kazdém kroku vybere Matéj levnéjsi hranu nez Danik.
Tém jsem bohuzel nemohla dat ani castecné body. Nakonec bych jenom chtéla poopravit casté
chyby: vrchol - vertex, vrcholy - vertices. (Adéla Karolina ,, Ada“ Zackova)



