
Introduction to Inequalities for the 4th Autumn
series

The problems of this series deal with inequalities, and so this text aims to present some basic
methods and important inequalities which can often be helpful in solving these kinds of problems.

Correct reasoning in inequality problems

An inequality problem is usually formulated like this: some variables are given along with some
constraints on them (e.g. they are all positive, their sum is equal to something etc.) and we want
to show that a given inequality in these variables holds for all values satisfying the constraints.
As a first thought, one might usually try to cleverly manipulate some of the algebraic expressions
in order to obtain an inequality which is true. That is how we find the solution. However, when
writing down the proof, it is much better (and mathematically rigorous) to go in the exact opposite
way – start with facts that are obviously true, and from these conclude that the desired inequality
holds.

If all the steps are performed carefully and all the manipulations used are equivalences, there
is really no difference, but in more complicated problems, it is easy to unwittingly make a step
that is not equivalent, and then the reasoning cannot be reversed – think of the inequality x3 ≥ 0,
which holds precisely for all nonnegative real x, but squaring both sides yields x6 ≥ 0, which is
true not only for nonnegative x, but for all real x. Thus, deducing that x6 ≥ 0 for nonnegative x
from the fact that x3 ≥ 0 holds for nonnegative x is perfectly correct, but we cannot reverse the
whole argument and say that because x6 ≥ 0 for all x ∈ R, the inequality x3 ≥ 0 also holds for
every real x.

Manipulating inequalities

Let x, y, v, w ∈ R. Then, the following statements hold:

(1) If x < y and u < v, then x + u < y + v.
(2) If v < x and x < y, then v < y (the transitivity property).
(3) If x > 0 and y > 0, then xy > 0.
(4) If x < y and a > 0, then ax < ay.
(5) If x < y and a < 0, then ax > ay.

The mentioned properties are formulated with the strict inequalities (i.e. x is less than y for x < y,
or equivalently y is greater than x), but they also hold for the nonstrict inequalities (that is, x
is less than or equal to y, which is the same as y is greater than or equal to x and which means
x ≤ y).

Important inequalities

We will introduce three famous inequalities that are often utilised in math competitions and which
are very important for many fields of mathematics. The first inequality is simple, yet it is often
used in the study of real analysis:
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Theorem. (Triangle inequality) Let x, y ∈ R. Then |x + y| ≤ |x|+ |y|.

Proof. For a ∈ R, |a| is always nonnegative. If a ≥ 0, then |a| = a ≥ 0 ≥ −a. If a < 0, then
|a| = −a > 0 > a. Hence, for all a ∈ R, |a| ≥ ±a. Thanks to this property, we can prove the
triangle inequality.

Let x, y ∈ R. Then x + y ≥ 0 or x + y < 0. If x + y ≥ 0, then |x + y| = x + y, and because
x ≤ |x| and y ≤ |y|, we can sum these inequalities together and get |x + y| = x + y ≤ |x|+ |y|. On
the other hand, if x + y < 0, then |x + y| = −(x + y) = −x − y. Similarly to the previous case,
from −x ≤ |x|, −y ≤ |y|, we obtain |x + y| = −x− y ≤ |x|+ |y|. �

The next inequality can be generalised for much more abstract objects, but we will formulate
it for two finite sequences of real numbers.

Theorem. (Cauchy-Schwarz inequality) Let n ∈ N and a1, a2, . . . , an, b1, b2, . . . , bn ∈ R. Then

(a1b1 + a2b2 + · · ·+ anbn)2 ≤
(
a21 + a22 + · · ·+ a2n

) (
b21 + b22 + · · ·+ b2n

)
.

Proof. Let P (x) = (a1x− b1)2 + (a2x− b2)2 + · · ·+ (anx− bn)2. That is a quadratic polynomial
and it is clearly nonnegative for every real x, because each of the summands is a square of a real
number and hence nonnegative. Therefore, P has at most one real root, and so its discriminant
must be less than or equal to zero. We may write P as

P (x) =
(
a21 + a22 + · · ·+ a2n

)
x2 − 2(a1b1 + a2b2 + · · ·+ anbn)x +

(
b21 + b22 + · · ·+ b2n

)
,

and subsequently, the inequality on the discriminant gives us

4(a1b1 + a2b2 + · · ·+ anbn)2 − 4
(
a21 + a22 + · · ·+ a2n

) (
b21 + b22 + · · ·+ b2n

)
≤ 0,

which is equivalent to the Cauchy-Schwarz inequality as stated in the theorem. �

Problem. Let x1, x2, . . . xn ∈ R. Show that 1√
n

∑n
i=1 xi ≤

√∑n
i=1 x

2
i .

Solution. From the CS inequality for ai = 1√
n

, bi = xi, i ∈ {1, 2, . . . , n}, we have

(
x1√
n

+
x2√
n

+ · · ·+
xn√
n

)2
≤
(

1

n
+

1

n
+ · · ·+

1

n

)(
x21 + x22 + · · ·+ x2n

)
.

Then, we can take the square root of both sides (both sides are nonnegative) as∣∣∣∣ x1√n +
x2√
n

+ · · ·+
xn√
n

∣∣∣∣ ≤√1 · (x21 + x22 + · · ·+ x2n),

from which (and from the property a ≤ |a| for any a ∈ R) it follows that

1
√
n

n∑
i=1

xi ≤

√√√√ n∑
i=1

x2i .

Our last inequality is the most common of all the various inequalities between the so-called
means. The left-hand side is the arithmetic mean, while the right-hand side is the geometric mean
of the given tuple of numbers:

Theorem. (AM-GM inequality) For n ∈ N and nonnegative real numbers a1, a2, . . . , an, the
following inequality holds:

a1 + a2 + · · ·+ an

n
≥ n
√
a1a2 · · · an.
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Problem. For real positive numbers x1, x2, . . . , xn, show that∑
cyc

xi

xi+1
≥ n.

The sum on the left-hand side is called a cyclic sum and it is just a shorthand for the expression

x1

x2
+

x2

x3
+ · · ·+

xn

x1
.

Here, we cannot use the more common notation

n−1∑
i=1

xi

xi+1
=

x1

x2
+

x2

x3
+ · · ·+

xn−1

xn
,

because that would omit the last term xn
x1

.

Solution. The numbers x1, x2, . . . , xn are positive, so each of the fractions x1
x2

, x2
x3

, . . . , xn
x1

is well-
defined and positive. Thus, the following case of the AM-GM inequality holds:

x1
x2

+ x2
x3

+ · · ·+ xn
x1

n
≥ n

√
x1

x2

x2

x3
· · ·

xn

x1
.

The left-hand side’s numerator is precisely the cyclic sum from the problem. All the fractions under
the right-hand side’s n-th root cancel out, as each xi is present once in the numerator and once in
the denominator of the resulting product. Thus, the inequality is equivalent to∑

cyc
xi

xi+1

n
≥ n
√

1,

which is the same as ∑
cyc

xi

xi+1
≥ n,

because n > 0.
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