
Communication
4th autumn series Date due: 9th January 2023

Pozor, u této série přijímáme pouze řešení napsaná anglicky!

Problem 1. (3 points)
A group of 26 pupils went to Matfyz. Every pupil is either always telling the truth or always lying.
On their way there they went in pairs and everyone said “My partner is a liar.” Could they have
rearranged themselves in pairs, so that everyone said “My partner is always telling the truth”?

Problem 2. (3 points)
Petr, Denisa and Markéta are playing a game. First, Denisa tells Petr seven pairwise distinct
positive integers whose sum is 100. Petr then tells Markéta the fourth highest of them and Markéta
has to guess all seven numbers. The girls win if Markéta guesses all numbers correctly, but they
cannot discuss their strategy beforehand. Which numbers should Denisa choose in order to win?

Problem 3. (3 points)
There are n piglets and each of them created one unique meme. One piglet can send a message to
another containing all memes he currently knows. How many messages must be sent so that every
piglet knows every meme?

Problem 4. (5 points)
Twenty teams competed in a tournament. On the first day, each team played (exactly) one game
against one of the other teams. On the second day, every team played one game again, but this time
against a different opponent. Prove that on the third day of the tournament, we can still choose
ten teams such that no two of them played together before.

Problem 5. (5 points)
Distances between pairs of cities in PraSestan are unique.1 Out of each city, an airplane departs to
its nearest neighbor. Find the maximum number of airplanes which can end up in the same city.

Problem 6. (5 points)
An odd number of teams entered a two-day tournament. On the first day, every team faced every
other team. The next day, they faced every other team again. Results of the tournament satisfy
the following condition: each team lost as many times as it won and there were no draws. Prove
that some half of the matches can be ignored so that the condition will still hold.

Problem 7. (5 points)
On Christmas Eve, n piglets exchanged some Christmas GIFs. We know that for each pair of piglets,
at least one of them sent the other a Christmas GIF. We also know that every piglet received a
Christmas GIF from exactly one quarter of the recipients of his Christmas GIFs. Determine all
possible values of n.

1PraSestan can be represented as a plane where cities are points.



Problem 8. (5 points)
In the kingdom of Esarpia, there live n ≥ 3 peasants. Some pairs of these peasants are friends2.
We say that four peasants a, b, c and d form a friendly square, if the four pairs {a, b}, {b, c}, {c, d}
and {d, a} are friends, but the pairs {a, c} and {b, d} are not.

King Esarp enacted a decree that a several day long festival is to be held to celebrate the
birthday of his most trusted Archmage. The decree stipulates the following rules:

• On each day of the festival, a party must be held. Once no more parties can be held, the
festival ends.
• A group of peasants may hold a party, only if they are all friends with each other and no

peasant that does not participate is friends with all the participants.
• No two parties can have precisely the same set of participants.

Prove that if there are no friendly squares in Esarpia, then the festival can last at most n(n−1)
2 days.

2Friendship is symmetric.



Communication
4th autumn series Model solutions

Problem 1.
A group of 26 pupils went to Matfyz. Every pupil is either always telling the truth or always lying.
On their way there they went in pairs and everyone said „My partner is a liar.ÿ Could they have
rearranged themselves in pairs, so that everyone said „My partner is always telling the truthÿ?

(Adéla Karolína Žáčková)

Solution:
We shall prove that the pupils couldn’t have rearranged themselves in pairs so that everyone said
“My partner is always telling the truth”.

There are three possible kinds of pairs. In the first kind of pair – truth-teller and truth-teller –
they both always tell the truth, so they both say “My partner is always telling the truth”. In the
second kind – truth-teller and liar – they both end up saying “My partner is a liar”, which is a lie
for the liar and true for the truthful one. In the third kind – liar and liar – they both lie, so they
say “My partner is always telling the truth”.

Since everyone said “My partner is a liar”, we can conclude that every pair consists of one
liar and one truthful pupil. There are 26 pupils, which means that 13 of them are liars and 13 of
them are truth-tellers. If they wanted to rearrange themselves so that everyone says “My partner
is always telling the truth”, they would need to be in pairs where either both are truthful or both
are liars. But that is clearly not possible, because there is an odd number of truth-tellers and an
odd number of liars.

Poznámky:
Téměř všechna řešení byla správná a postupovala stejně jako vzorové řešení.

(Klárka Grinerová)

Problem 2.
Petr, Denisa and Markéta are playing a game. First, Denisa tells Petr seven pairwise distinct
positive integers whose sum is 100. Petr then tells Markéta the fourth highest of them and Markéta
has to guess all seven numbers. The girls win if Markéta guesses all numbers correctly, but they
cannot discuss their strategy beforehand. Which numbers should Denisa choose in order to win?

(Magdaléna Mišinová)

Solution:
The numbers Denisa should choose are 1, 2, 3, 22, 23, 24, 25 (whose sum is 100). This way, if Petr
gives Markéta the fourth highest number, i.e. 22, the rest are uniquely determined. Why? The sum
of the three smallest natural numbers (1, 2, 3) is 6 and the sum of the three smallest numbers
greater than 22 (23, 24, 25) is 72. Together, they sum to 6 + 22 + 72 = 100. Therefore, if we are
given the number 22, the rest of the numbers must be the smallest possible ones, since otherwise
the sum would become larger than 100.

1



Poznámky:
Naprostá většina řešení byla správná a hezky odůvodněná. Těch pár řešení, která správná nebyla,
alespoň měla myšlenku „udělejme malé/velké členy co nejmenší/největšíÿ, za což jsem nějaké body
dávala. Ve dvou případech bohužel bylo opomenuto, že čísla mají být rozdílná, ale i v těchto řešeních
byly nějaké správné myšlenky, za které jsem body dala. (Anna Marie Minarovičová)

Problem 3.
There are n piglets and each of them created one unique meme. One piglet can send a message to
another containing all memes he currently knows. How many messages must be sent so that every
piglet knows every meme? (Klátra)

Solution:
There has to be a time when exactly one piglet knows every meme. That is because a message is
sent between one sender and one receiver. After such a piglet exists, every other piglet has to get
at least one more message to get to know every meme. That means at least n − 1 messages must
be sent after some piglet knows all the memes.

To get one piglet to know every meme, every other piglet had to send at least one message
containing its meme. Otherwise, his meme would not get to the all-knowing piglet. That means at
least n− 1 different messages sent.

In summary, at least n − 1 messages were sent to get one piglet to know every meme and at
least n− 1 messages afterward to get every piglet to know every meme from the piglet who knows
all the memes. This means that overall, at least 2(n− 1) messages must have been sent.

To achieve that every piglet knows every meme in 2n− 2 messages, piglets can follow a simple
algorithm:

Every piglet except piglet P sends his meme to piglet P . Then, piglet P sends messages contai-
ning all memes to every other piglet. With this algorithm, 2n−2 messages were sent. Furthermore,
we have shown above that less messages would not be sufficient, so this construction is optimal and
we are done.

Poznámky:
Hodně řešitelů našlo správné řešení i algoritmus, jak se k němu dojde. Ale ještě k tomu je nutné,
abyste dokázali, že to opravdu je nejmenší možný počet. (Petr Hladík)

Problem 4.
Twenty teams competed in a tournament. On the first day, each team played (exactly) one game
against one of the other teams. On the second day, every team played one game again, but this time
against a different opponent. Prove that on the third day of the tournament, we can still choose
ten teams such that no two of them played together before. (Magdaléna Mišinová)

Solution:
We start by constructing a graph where vertices are teams and edges are the matches played. It is
easy to see that every vertex has exactly two edges incident to it. This implies that every connected
component is a cycle. We can prove this by choosing any vertex and then travelling through the
graph, starting at the chosen vertex and not allowing ourselves to use any edge twice. Because
every vertex has two edges coming out of it, our journey must end at the starting vertex.

Next, we will prove that every cycle has an even length. In order to see this, we colour an edge
white if the corresponding match was played on the first day and black if it was played on the
second day. So there will be one black and one white edge adjacent to every vertex. However, then
there must be an even number of edges in any given cycle, since the edge colours clearly alternate.

As every cycle is even, we can choose every other vertex from each cycle. Thus we get precisely
half the vertices from any cycle, so ten teams in total. No edges can exist between the chosen
vertices, so this choice satisfies the conditions from the problem statement.
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Poznámky:
Všechna správná řešení postupovala obdobně. Někteří řešitelé bohužel neřešili problém obecně a
odevzdali pouze konstrukci pro nějaký případ. Taková řešení získala jen velmi malý počet bodů.

(Vojta „Dlážaÿ Gaďurek)

Problem 5.
Distances between pairs of cities in PraSestan are unique.1 Out of each city, an airplane departs to
its nearest neighbor. Find the maximum number of airplanes which can end up in the same city.

(Marian Poljak)

Solution:
Let O be a city in PraSestan. Our objective is to place as many cities as possible around O so that
the airplanes departing from those cities end up in O, and so that the distance between any pair of
cities is unique. Let us place a point A which does not collide with O. The airplane from A must
land in O. Now we would like to place B, so that an airplane departing from B lands in O without
changing the course of A’s airplane. This implies two pieces of information:

(1) B cannot lie inside the circle k centred at A with radius |AO|, otherwise the airplane from
A would end up in B.

(2) B cannot lie in the half-plane defined by the bisector of the line segment AO and A. If
that was the case, the airplane from B would land in A.

Hence we have a region where B cannot be placed. This region must include the boundary of k
and the bisector of AO, since otherwise we would contradict our assumption that all distances are
unique. The bisector of AO intersects k in two points. We will call one of them P . Since the bisector
of AO represents the set of all points Z for which |AZ| = |OZ|, we have |AP | = |AO| = |OP |. There-
fore4AOP is an equilateral triangle and |∠AOP | = 60◦. Now, if we place B so that |∠AOB| ≤ 60◦,
B will surely lie in the forbidden region. This logic holds for any pair of distinct points X and Y
around O, so we must have |∠XOY | > 60◦. It follows that we can place at most 5 cities around O

as 6 or more will not fit (since 6 · |∠XOY | > 360◦).

We have shown that the maximum number of airplanes which can land in the same city cannot
be more than 5. The following arrangement of exactly 5 points around O works, so 5 is the number
we are looking for.

O
66◦

69◦

72◦
75◦

78◦

1PraSestan can be represented as a plane where cities are points.
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Poznámky:
Téměř všechna kompletně správná řešení se řídila podobnou strukturou. Nicméně, mnohdy se
stávalo, že řešitel dobře dokázal proč 6 a více bodů nelze položit kolem jednoho města podle
našich požadavků, ale pak nikde nebyla zahrnutá konstrukce (náznak bohatě stačil) pěti měst. Za
to se strhával bod, jelikož takový důkaz je neúplný. (Diana Bergerová)

Problem 6.
An odd number of teams entered a two-day tournament. On the first day, every team faced every
other team. The next day, they faced every other team again. Results of the tournament satisfy
the following condition: each team lost as many times as it won and there were no draws. Prove
that some half of the matches can be ignored so that the condition will still hold.

(Magdaléna Mišinová)

Solution:
Let n be the number of teams in the tournament. We can represent the matches played during
both tournament days as a directed multigraph. There will be an edge from team A to team B

whenever A wins against B. That means that between every two vertices, there are precisely two
edges. Let us fix an arbitrary vertex v. There are three types of these “double edges” incident with
v. Both edges can be pointing to v. Both can be pointing away from v. Or they can be pointing
in opposite directions. We will refer to the first two types as same-edge and the third as anti-edge.
Let us denote by x, y and z, respectively, the number of these “double edges” incident with v.
Because every team won as many times as it lost, it must be the case that x = y. But then the
“double-degree” of v is n− 1 = x + y + z = 2x + z. Because n is odd, n− 1 is even, which means
that z has to be even.

Next, we would like to select the matches to ignore. Notice that if we delete one edge from each
same-edge, the condition that each team won as many matches as it lost will still be satisfied – this
is because of the previous observation that x = y. Therefore, we would like to overlook one edge
from each anti-edge in a way that the condition still holds. That way, we would ignore exactly half
the matches.

Let us create a new, unoriented graph on the same set of vertices. We will put an edge between
two teams whenever an anti-edge is in the original graph. The previous observation that z has to
be even shows that each vertex has an even degree. A graph where this is the case is known as
Eulerian. Therefore, there exists an Eulerian cycle in every connected component, that is a cycle
which uses each edge exactly once. But then we can give an orientation to these cycles. And then,
from each anti-edge, we forget the edge going in the opposite direction than the orientation of the
cycle. This way, for each vertex, we keep the same number of incoming edges and outgoing edges,
so the condition is satisfied and we are done.

Alternatively, if we are given a graph with even degrees, we can decompose it into cycles. We
start at an arbitrary vertex and go along the edges until we revisit some vertex. Then we have
a cycle from that vertex to itself. We can orient it in the same way as with the Eulerian cycle
and then delete it. After the deletion, it still has to hold that every vertex has an even degree.
Therefore, we can continue this way until all vertices have degree 0.

Poznámky:
Všechna správná řešení se ubírala velice podobnou úvahou jako to vzorové. Poměrně dost došlých
řešení buď ne úplně správně pochopilo úlohu, nebo předpokládalo nějakou nepravdu. Jedna častější
chyba byla, že se na situaci nemůžeme dívat izolovaně z jednoho vrcholu a argumentovat pouze
paritou, protože pokud se rozhodneme ignorovat turnaj jednoho týmu, pak jej musíme ignorovat i
pro jeho soupeře.

Dále se poměrně těžko rozhodovalo, jak moc jsou si jednotlivá řešení vědoma detailů v závěru
důkazu – kde máme graf se všemi stupni sudými. Mnoho řešení opomnělo, že tento graf nemusí být
souvislý. Také i eulerovský tah se dá vytvořit konstruktivně podobně jako dekompozice do cyklů.
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Zde je ale důležité rozlišovat, zda při těchto konstrukcích uvažujeme o cyklech (nesmí se opakovat
vrcholy ani hrany kromě počátečního) nebo o uzavřených tazích (nesmí se opakovat pouze hrany).
Moc tomu nepomáhalo, že série byla anglická, tedy se lehce spletla terminologie walk, path, trail,
cycle či circuit, a pak se těžko soudilo, zda je to chyba myšlenková, nebo jazyková.

(Lenka Kopfová)

Problem 7.
On Christmas Eve, n piglets exchanged some Christmas GIFs. We know that for each pair of piglets,
at least one of them sent the other a Christmas GIF. We also know that every piglet received a
Christmas GIF from exactly one quarter of the recipients of his Christmas GIFs. Determine all
possible values of n. (Marian Poljak)

Solution:
We can represent this problem as a directed graph on n vertices, where an edge from a to b means
that piglet a sent a GIF to piglet b. If both a and b sent GIFs to each other, we will call this pair
friendly. We will denote the number of friendly pairs as f .

Now let us count the number of edges. Each pair of vertices has to have at least one edge between
them, and for every friendly pair, there will be exactly two edges. So the total number of edges is(n
2

)
+f . However, we can also count the number of edges in another way. Let us look at an arbitrary

vertex and count the number of friendly pairs it is in – let’s call this number r. Each friendly pair
means one recipient of his GIF that also sent a GIF back. So from the problem statement, we know
that this piglet has sent out exactly 4r GIFs. So the total number of sent GIFs is 4 times the sum
of r’s for every vertex, which is equal to twice the number of friendly pairs. This means that, in
total, 4 · 2 · f = 8f GIFs were sent, and consequently there are 8f edges in our graph.

We have counted the number of edges in the graph in two different ways and these two results
must coincide. Therefore, we get (n

2

)
+ f = 8f,

7f =
n · (n− 1)

2
.

From this equation, we see that n has to be either a multiple of seven or one more than a multiple
of seven – because if this wasn’t the case, then f wouldn’t be an integer. All that is left to do
is to prove that a suitable configuration exists for any n that can be written as 7k or 7k + 1 for
a non-negative integer k. For n = 0 and n = 1, such configurations obviously exist. For all other
values, we can use one of the following two constructions:

(1) n = 7k: Imagine that 7k− 1 piglets sit in a circle and each sends a GIF to the next 4k− 1
piglets in the clockwise direction and also to the one piglet who is not in the circle. This
way, every piglet will receive a GIF from 4k− 1 piglets in the counter-clockwise direction,
so there will be exactly (4k − 1) + (4k − 1) − (7k − 2) = k piglets which form a friendly
pair with this piglet. That is a quarter of the number of GIFs that this piglet sent, so
the condition from the task is met for every piglet in the circle. The one piglet that is
not in the circle didn’t send any GIFs, so the condition is also met for him. Hence this
configuration is satisfactory.

(2) n = 7k + 1: Now, imagine that all 7k + 1 piglets sit in a circle and let each of them send
GIF to the next 4k piglet in the clockwise direction. This way, each piglet will receive 4k
GIFs and will be a part of 4k+4k−7k = k friendly pairs, which is a quarter of the number
of GIFs this piglet set. Since this holds for each piglet, so we have a valid configuration.

Therefore, we have shown that all values of n, which can be written as 7k or 7k+1, are possible
and all other values are not, so this is the end of our solution.
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Poznámky:
Naprostá většina řešení správně odvodila, že hodnota n musí být ve tvaru 7k, nebo 7k+ 1. Nemálo
řešení už ale pro tyto hodnoty neukázalo konstrukci a tedy nedokázalo, že všechny n v tomto tvaru
jsou už vyhovující. Spousta řešení také za možné hodnoty n neurčila nulu a jedničku, které ale zadání
vyhovují (i když je v těchto případech posláno nula GIFů). Za to jsem však body nestrhával.

(Martin Fof)

Problem 8.
In the kingdom of Esarpia, there live n ≥ 3 peasants. Some pairs of these peasants are friends2.
We say that four peasants a, b, c and d form a friendly square, if the four pairs {a, b}, {b, c}, {c, d}
and {d, a} are friends, but the pairs {a, c} and {b, d} are not.

King Esarp enacted a decree that a several day long festival is to be held to celebrate the
birthday of his most trusted Archmage. The decree stipulates the following rules:

• On each day of the festival, a party must be held. Once no more parties can be held, the
festival ends.
• A group of peasants may hold a party, only if they are all friends with each other and no

peasant that does not participate is friends with all the participants.
• No two parties can have precisely the same set of participants.

Prove that if there are no friendly squares in Esarpia, then the festival can last at most n(n−1)
2 days.

(Magdaléna Mišinová)

Solution:
First, let’s formalize the problem using graphs: let each peasant be represented by a vertex and
draw an edge between two vertices if and only if the corresponding peasants are friends. Denote
this graph G. We are to prove that if G does not contain any friendly squares, then there are at
most n(n−1)

2 different maximal cliques in G (maximal in the sense that there is no larger clique
containing it). We will solve the problem by using mathematical induction.

For the base case, let’s start with n = 3. There are precisely 4 different graphs on 3 vertices up
to symmetry. If there are no edges in G, we have exactly 3 single element maximal cliques. If there
is exactly one edge, we have two maximal cliques (the two vertices of the edge and the remaining
vertex alone). If there are exactly two edges, there are also only two maximal cliques (the two
vertices of each edge). Finally, if G is complete, then we have only one maximal clique (consisting
of all vertices). Overall, we have at most 3 = 3·2

2 maximal cliques as we wanted.
For the induction step, suppose the statement holds for all graphs on n−1 vertices. We will prove

it holds for n as well. Pick a vertex v of G, denote by C1, . . . , Ck the maximal cliques containing v
and D1, . . . , Dl the maximal cliques not containing v.

If v has no neighbours, then k = 1, as the only maximal clique containing v is C1 = {v}. Since

D1, . . . , Dl are also maximal cliques in the graph G \ {v}, we have l ≤ (n−1)(n−2)
2 by induction

hypothesis. Hence

k + l ≤ 1 +
(n− 1)(n− 2)

2
<

n(n− 1)

2

and we are done.
If v has at least one neighbour, then the cliques C1, . . . , Ck must each contain at least 2 vertices.

For 1 ≤ i ≤ k denote C′i = Ci \ {v}. These can be viewed as cliques in the graph G \ {v}. They
are different from D1, . . . , Dl, since Di’s are maximal in G. Denote m the number of cliques in
C′1, . . . , C

′
k that are not maximal in G \ {v}. By induction hypothesis, we get

(k −m) + l ≤
(n− 1)(n− 2)

2
.

2Friendship is symmetric.
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Note that if we now show that m, the number of non-maximal cliques C′i, is at most

n− 1 =
n(n− 1)

2
−

(n− 1)(n− 2)

2
,

we will be done.
Let’s consider some clique Ci such that C′i is not maximal in G\{v}. Its non-maximality implies

there exists an extending vertex u ∈ G \Ci ⊂ G \ {v} such that all elements of C′i are friends with
u but u is not friends with v (otherwise Ci ∪ {u} would be a clique contradicting the maximality
of Ci). For the sake of contradiction, suppose that m > n− 1. Then we can find two non-maximal
cliques C′i, C

′
j with the same extending vertex u. Now, since Ci and Cj are different, there must

exist two vertices xi ∈ C′i, xj ∈ C′j that are not connected by an edge (otherwise Ci ∪Cj would be
maximal clique). However, this means that the vertices v, xi, u, xj form a friendly square, which
contradicts the conditions of the problem. We have, therefore, completed the induction step.

Poznámky:
Všechna správná řešení použila stejný argument indukcí jako vzorové řešení. Pro zajímavost, pokud
bychom ze zadání vypustili podmínku na bezčtvercovost daných grafů, tak existují grafy s více než
n(n−1)
2 maximálními klikami (n = 12 je nejmenší n, pro které takový graf existuje, přičemž obecně

je maximální možný počet exponenciálně závislý na n). (Martin Raška)
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